Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Booster for Next-Generation Supercomputers

15.11.2011
Kick-off for the European exascale project DEEP

Today supercomputers are an indispensable tool in almost all fields of research. However, present concepts cannot be extended indefinitely without causing an unreasonable increase in effort and costs. For this reason, scientists plan to develop a new platform for next-generation supercomputers as part of the EU DEEP project (Dynamical ExaScale Entry Platform), with applications for brain research, climatology and seismology, to name but a few.

The project will be launched this December and showcased at the world’s most important supercomputing conference, the SC’11 in Seattle, on 17 November 2011.

Even today scientists already need gigantic computing capacity in order to model biological organs and to develop ever more multifaceted models of climate or the universe or complex building blocks of matter.

To ensure that European research continues to have access to the necessary resources for high-performance computing (HPC) in future, Forschungszentrum Jülich is planning to enter the exaflop/s age by 2020 with the DEEP project – together with Intel, ParTec and 12 other European partners from 8 countries. An exaflop/s computer of this type, performing a quintillion (1018) calculations per second, would be a thousand times faster than today’s supercomputers. The scientists expect a first prototype as early as 2014/2015 that will have a capacity of 100 petaflop/s, around one hundred times faster than today’s petaflop/s computers, such as Jülich’s Petaflop computer JUGENE.

With the exaflop/s class, scientists will be able to tackle challenges which still seem unrealistic today, such as detailed simulation of the human brain. However, increases in performance on this scale can only be achieved by parallel computing employing millions of processors. Using today’s technology, this would mean that energy costs would become prohibitive. In order to pave the way for a viable exascale computer, researchers in the DEEP project, funded with € 8 million by the European Commission, will be optimizing the networking of different hardware components and integrating new energy-saving cooling systems.

Scientists at Jülich have designed a new type of “cluster booster architecture” for DEEP. One important element is the processors that are still under development and are specially designed for parallel computing, the Intel® Many Integrated Core Architecture, with 50 plus cores on a single chip. Each of these 512 MIC processors will be linked to a booster that accelerates the entire system via a high-speed network called Extoll developed by the University of Heidelberg. “Working closely with Intel helps us to accelerate the development of cluster architectures for the exascale and to address the hardware and software challenges of building, programming and operating such systems”, explains Prof. Thomas Lippert, head of the Jülich Supercomputing Centre.

The new approach takes into account the fact that large-scale, future simulations will consist of multiple and very diverse tasks with complicated communication patterns between the processors. The underlying idea: the complex components of a program are executed on the “core” of the parallel computer, a cluster with Intel Xeon server processors. In contrast, simple, highly parallel program components that do not rely on such CPUs will be offloaded to the booster modules which, thanks to their large number of more simply structured computer cores, are able to perform the calculations for tasks of this kind with far greater energy efficiency.

“The close collaboration between Intel, Europe's largest scientific computer centre in Jülich and the leading cluster software vendor ParTec presents a unique opportunity to accelerate the evolution of cluster HPC platforms. Work on the novel DEEP architecture will be a key component in the understanding and development of future exascale systems, middleware and applications”, explains Stephen Pawlowski, Intel Senior Fellow and General Manager, Datacenter and Connected Systems Pathfinding.

Hugo R. Falter, Chief Operating Officer at ParTec, reports: “I am glad that the ParaStation Cluster Operating System can contribute to the success of this visionary project.” Based on an expanded version of this cluster operating system, an entire software environment for the new hardware architecture will be created with DEEP. As part of the project, in addition to tools for application developers, application software for brain research, climatology, seismology, high-temperature superconductivity and computational fluid engineering will also be transferred to the platform.

Forschungszentrum Jülich, Intel and ParTec have collaborated closely since 2010 in the Exacluster Laboratory at Jülich on developing novel system architectures and software tools for cluster computers. The main focus is on the scalability of hardware and software up to the exascale class and on ensuring the reliability of these systems. The DEEP project was initiated under the auspices of the ExaCluster Laboratory.

Further information:
SC’11 - International Conference for High Performance Computing, Networking, Storage and Analysis:

http://www.sc11.supercomputing.org/

Research at Jülich Supercomputing Centre (JSC):
http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
Projektpartner:
Forschungszentrum Jülich (DE): http://www.fz-juelich.de
Intel GmbH (DE): http://www.intel.de
ParTec Cluster Competence Center GmbH (DE): http://www.par-tec.com/
Leibniz-Rechenzentrum der Bayrischen Akademie der Wissenschaften (DE): http://www.lrz.de/
Universität Heidelberg (DE): http://www.uni-heidelberg.de
German Research School for Simulation Sciences (DE): http://www.grs-sim.de
Eurotech (IT): http://www.eurotech.com
Barcelona Supercomputing Center (ES): http://www.bsc.es
Mellanox (IL): http://www.mellanox.com/
École Polytechnique Fédérale de Lausanne (CH): http://www.epfl.ch
Katholieke Universiteit Leuven (BE): http://www.kuleuven.be
European Centre for Research and Advanced Training in Scientific Computation (FR): http://www.cerfacs.fr
Cyprus Institute (CY): http://www.cyi.ac.cy
Universität Regensburg (DE): http://www.uni-regensburg.de
CINECA (IT): http://www.cineca.it
CCGVeritas (FR): http://www.cggveritas.com
Contact:
Wolfgang Gürich
+49 2461 61-6540
w.guerich@fz-juelich.de
Press Contact:
Tobias Schlößer
+49 2461 61-4771
t.schloesser@fz-juelich.de
Forschungszentrum Jülich…
pursues cutting-edge interdisciplinary research addressing pressing issues facing society today while at the same time developing key technologies for tomorrow. Research focuses on the areas of health, energy and environment, and information technology. The cooperation of the researchers at Jülich is characterized by outstanding expertise and infrastructure in physics, materials science, nanotechnology, and supercomputing. With a staff of about 4,700, Jülich – a member of the Helmholtz Association – is one of the largest research centres in Europe.

Annette Stettien | Forschungszentrum Jülich
Further information:
http://www.fz-juelich.de

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>