Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Bluetooth System Orients Blind and Sighted Pedestrians

23.09.2008
A new Bluetooth system designed primarily for blind people places a layer of information technology over the real world to tell pedestrians about points of interest along their path as they pass them.

The Talking Points urban orientation system was developed at the University of Michigan. Researchers will present their work at two conferences on Sept. 24.

"Blind people can get from point A to point B. They learn to count steps if they have to, but they miss the journey because they don't always know what they're passing. The idea behind Talking Points is to enhance the journey," said James Knox, adaptive technology coordinator for the University's Information Technology Central Services and one of the system's developers.

"Talking Points can be viewed as a first step in the direction of an audio virtual reality designed for people with blindness and very useful to the sighted community as well," Knox said.

For the sighted community, the system could give passersby a peek at the specials or sales inside a business. It could offer on-the-go access to customer reviews. For blind pedestrians, it could do the same, but it would also fill those gaps in knowledge. Talking Points could help visually-impaired people find public restrooms, police stations, public transportation and restaurants with Braille menus, for example.

"If it caught on, this would be an effective way to tag the whole world," said Jason Stewart, a master's student in the School of Information who is involved in the project. "Anyone with a reader could use it to find out more information about where they are."

Similar systems exist, but Talking Points is the first known to use Bluetooth, cater to both the sighted and the visually-impaired, allow people to operate it entirely with voice commands, and incorporate community-generated content through a website.

Knox and collaborators in the School of Information and the Department of Electrical Engineering and Computer Science created an early version of Talking Points years ago.

A group of master's students and undergraduates has given the project new energy. They shrunk the receiver and switched the transmitting technology from RFID to the more popular Bluetooth. They are also exploring other technologies such as GPS.

Stewart and fellow School of Information master's students Jakob Hilden and Michelle Escobar will present papers about Talking Points on Sept. 24. Stewart and Hilden will present at the Ubicomp 2008 conference in South Korea. Escobar will present at the Accessible Design in the Digital World conference in the United Kingdom.

The Talking Points system includes several components:

A mobile device picks up the Bluetooth signals and speaks or displays information to the user. In the future, a cell phone could be the receiver, but this prototype isn't a phone. It is slightly larger, about the size of a paperback book. If a user wants more information about a beacon, she can tell the device by voice or touch.

Bluetooth beacons, or tags, would be located at points of interest where owners wish to give information to Talking Points users. Businesses could purchase these beacons, which cost less than $20. Cities could tag information centers, parks or other buildings, for example.

A website would allow Talking Points beacon owners to program their tags. They could update their messages regularly. Once a beacon is added, other community members could add their comments about the point of interest. Pedestrians using the system could then choose to get those comments.

"This project enables a type of augmented reality," said Hilden, one of the students who will present the research at Ubicomp. "It shows how we can take user-generated information from the Internet and lay it over reality to help people make sense of where they are in their environment and what the possibilities are around them."

In addition to developing a prototype receiver, the students tested their system in field simulations with visually-impaired and sighted people and conducted focus groups.

"Location-based guide systems of one kind or another have been built and re-built by academic researchers for over a decade now, but this is the first project that has really focused on the needs of the visually impaired and gone out to make sure the system is being developed to meet those needs," said Mark Newman, an assistant professor in the School of Information and the Department of Electrical Engineering and Computer Science. Newman is a co-author of the papers that will be presented.

The students received a $10,000 grant from GROCS 2008 to undertake this project. GROCS stands for Grant Opportunities [Collaborative Spaces], a Digital Media Commons program to fund student research on digital media in collaborative learning.

The Ubicomp paper is called "Accessible Contextual Information for Urban Orientation." The Accessible Design in the Digital World paper is called "Contextual information system for urban orientation of sighted and non-sighted users." Authors of both are: School of Information master's students Stewart, Escobar, Hilden and Kumud Bihani; recent sociology graduate Sara Baumann, as well as Newman, an assistant professor.

Developers of the current prototype software are engineering undergraduates Travis (Donggun) Yoo and Josh Rychlinksi, and recent engineering graduate Peter Kretschman.

For more information: Talking Points: http://talking-points.org/
School of Information: http://www.si.umich.edu/
Mark Newman: http://www.si.umich.edu/people/faculty-detail.htm?sid=424

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu

Further reports about: Blind Bluetooth Points Talking Talking Points system blind pedestrians blindness

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>