Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood flow in the brain can now be measured in real time

23.03.2010
Thanks to new technology developed by researchers in Lund, it has for the first time become possible to measure blood flow in the brain directly and continuously.

The technology makes it easier for doctors to quickly identify the correct medication for patients affected by serious head injuries and stroke. It also makes it easier to investigate the physiology of the brain. Doctors have already discovered that the blood flow in the brain varies significantly more over time than previously thought.

"In order to make diagnoses and quickly be able to see if the medication given is right for the brain, this information is very important in a neurointensive care unit.

Today magnetic resonance imaging scans and other examinations are carried out, but these are expensive, unreliable, time-consuming and only provide information about blood flow at the time of the examination. With this method we not only get information about blood flow in the brain directly and continuously; the information can also be stored, which means that we can review previous care more easily", says Peter Reinstrup, a doctor at Skåne University Hospitals in Lund.

This technology will also facilitate research. Research and development on head traumas and brain haemorrhages based on cerebral blood flow, CBF, has stalled, precisely because it has been so difficult to determine blood flow in the brain, which is measured in millilitres per 100 g of brain per minute. In normal cases the value is around 50.

"If an individual suffers a head injury, e.g. after falling or receiving a knock on the head, the cerebral blood flow follows a course in which the flow varies with time. It is important for us to constantly regulate the flow so that it does not become too high, as the brain could then swell, or too low, as the brain could then suffer from a lack of oxygen", explains Peter Reinstrup.

The technology came into existence as something of a happy coincidence and has been developed in collaboration between doctors, the hospital's medical technology department and Lund University's Faculty of Engineering.

It all began with doctors contacting Boris Magnusson, Professor of Computer Science at Lund University. The mathematical algorithm for calculating the blood flow and the volume of blood in the brain had been developed by Peter Reinstrup and Erik Ryding, doctors at Karolinska University Hospital in Solna, over the previous four or five years. However, they did not have a way to export and display patient data on blood flow. They had even engaged IT consultants, but without success. There had been a demand for a technical solution ever since 2002.

Boris Magnusson let two students, Karl Kullberg and Nick Bosma, in Computer Science and Engineering Physics respectively, take a closer look at the problem. In a joint degree project they succeeded, in collaboration with Jimmy Johansson at the hospital's medical technology department, in developing a computer program that could retrieve and correlate the existing information about the pressure in the brain with information about blood volume and blood flow for each heartbeat.

Now there is a computer on the windowsills in the patients' rooms at the neurointensive care unit in Lund. A patent application is pending and in the long term it is hoped that the method can be integrated with existing equipment, which would mean that it could also benefit other hospitals.

For more information, please contact Boris Magnusson, Professor of Computer Science, +46 (0)46 222 80 44, Boris.Magnusson@cs.lth.se,

Peter Reinstrup, doctor at the neurointensive care unit in Lund, +46 (0)46 17 42 23, peter.reinstrup@skane.se,

Jimmy Johansson, Medical Technology Department, +46 (0)46 17 10 67, jimmy.johansson@skane.se,

Karl Kullberg d03kk@student.lth.se, +46 (0)73 433 56 78,

Nick Bosma f04nb@student.lth.se.

Pressofficer Kristina Lindgärde;+46-709 753 500; kristina.lindgarde@kansli.lth.se

Kristina Lindgärde | idw
Further information:
http://www.vr.se

More articles from Information Technology:

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>