Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-Linux goes global

13.01.2009
Release of NEBC Bio-Linux Version 5.0 - a one-stop shop for bioinformatics tools in a Linux context

The NERC Environmental Bioinformatics Centre (NEBC), based at the UK Centre for Ecology & Hydrology, has released the latest version of NEBC Bio-Linux, a specialised computing system designed for the environmental genomics research community.

Bio-Linux is a freely available computing platform designed to provide a one-stop shop for accessing a wide range of standard and cutting-edge bioinformatics tools in a Linux context.

The growth of molecular data from the fields of genomics, metagenomics and related ‘omic disciplines calls for ever improving methods of data collection, storage and analysis. The field of bioinformatics is rich in software and fast, economical computing environments are becoming essential components of almost all research labs pursing scientific questions using these data-rich technologies.

Intended users of NEBC Bio-Linux 5.0 range from students entering the field of bioinformatics and new users of Linux to institutional teaching labs and expert computational biology groups well versed in Linux looking to use the existence of freely available customised distributions to build and maintain computational infrastructure quickly and effectively.

Previously NEBC Bio-Linux was only easily accessible to NERC funded researchers through an application process. With the release of version 5.0, this system is available online for easy download. The simplified access means researchers worldwide can also benefit from the opportunities offered by Bio-Linux. Researchers in North America, Europe, New Zealand, India, Iran, Africa and China have already taken advantage of Bio-Linux and many more users are anticipated as the field of bioinformatics continues to grow rapidly.

Dawn Field, Director of NEBC said,“ To apply information technology to the field of molecular biology researchers need access to multi-user, networked machines that are fast and contain a large suite of software. The NEBC Bio-Linux project has distributed the specialist skills and expertise needed to build this type of infrastructure within the UK. The result is a new generation of PhD students and postdocs in this community with more sophisticated computing skills. With the release of version 5.0 we aim to allow the rest of the world to take advantage of these developments.”

NEBC’s main funder, the UK Natural Environment Research Council is further supporting the implementation of Bio-Linux by funding a new NERC Environmental Bioinformatics Facility at the Centre for Ecology & Hydrology. This new facility, the fifth node of the NERC Molecular Genetics Facility (MGF), will become fully operational later in 2009 but from today it will be possible for reseachers to cost Bio-Linux and associated bioinformatics support into NERC grant applications. The intention is that Bio-Linux will become the underpinning computational environment for all activities within the MGF-Oxford node.

Dawn Field, adds, “We need to foster a highly collaborative community that can make use of a network of computers throughout the UK. NEBC Bio-Linux provides a powerful framework for delivering support, minimizing duplication of effort and most importantly, empowering researchers to take on their own analyses using a large suite of tools”.

The more visionary role of NEBC Bio-Linux is to build electronic networks of researchers with shared interests, using a shared platform. This is already happening with a recent application of Bio-Linux in Africa. Peter Dawyndt, Professor of Computing at the University of Ghent found Bio-Linux on the web. He comments, “Bio-Linux is a terrific solution to our need to bring state-of-the-art bioinformatics computing platform to students in Africa. With just a set of DVDs in our luggage, we are able to install a top-notch computing environment in which to deliver our entire bioinformatics course. Most importantly, the entire infrastructure stays behind and remains available to interested students.”

Bio-Linux is a derivative of Ubuntu Linux [http://www.ubuntu.com] customised for bioinformatics analysis and development work. Approximately 60 bioinformatics packages (providing around 500 individual programs) are installed on Bio-Linux, including open-source packages developed at the NEBC. In addition, Bio-Linux comes with comprehensive, categorised documentation for the bioinformatics packages installed. Users can install a full NEBC Bio-Linux system or just add some or all packages to already installed Debian or Ubuntu Linux systems.

Lead Developer, Stewart Houten, says “Bio-Linux 5.0 retains the added-value features of Bio-Linux 4.0, but is now based on the highly popular and user-friendly Ubuntu distribution and the Gnome desktop. The system is available as an installable DVD or USB memory stick, making it readily accessible to a wide audience.”

The open source GNU/Linux computing system is progressively being seized upon as the preferred choice in addressing researcher computing needs. Despite Linux distributions becoming easier to use, the task of configuring the system for a specific purpose and collecting, compiling and setting up the academic software remains challenging. Bio-Linux provides a solution to this challenge.

Researchers and developers alike are welcome to join the NEBC Bio-Linux project and more information about the project can be found on the NEBC Bio-Linux homepage (http://nebc.nox.ac.uk/biolinux.html). Stewart Houten adds, “We make design choices in consultation with our community and continually adapt NEBC Bio-Linux to meet their needs. This release responds to the growing skills in our community in the use of Bio-Linux and the striking increase in the number of users downloading Bio-Linux or its packages from locations outside the UK.”

Supporting quotes from the genomics community

NEBC Lead Bioinformatician, Bela Tiwari says, “The NEBC Bio-Linux network accelerates research through improved electronic communication and support. I can log into a remote machine when requested, allowing me to directly troubleshoot or undertake collaborative analysis. Likewise, researchers can make use of a range of mechanisms for securely sharing data. Having many users able to access a single well-maintained machine also makes effective use of NERC funds and research time alike.”

Tony Travis of the NuGO consortium says, “The NEBC Bio-Linux package repository has been an essential element of the success of our NuGO Black box project, designed to equip our community of researchers with integrated bioinformatics solutions.”

Researcher Keith Jolley, of the University of Oxford, adopted Bio-Linux to deploy a specialist set of software for genetic tracking of pathogens in a clinical setting. He says, “The availability of Bio-Linux has made it possible to distribute and maintain our software network with minimum effort”.

NEBC Bio-Linux was conceived in 2002 as part of the data management plan of the NERC Environmental Genomics Science Programme. Dr. Pamela Kempton, of NERC says, “The Bio-Linux project has fully delivered against our expectations for the project. We are pleased to see this new development and the potential for Bio-Linux to reach a wider user audience”.

Dr Jason Snape, based within AstraZeneca UK Ltd. and the Science Co-ordinator of the two NERC Environmental Genomics Programmes, says, “That NEBC and Bio-Linux were established at the outset of the NERC investment in genomics. This was a highly strategic investment aimed at building a community of environmental scientists at the forefront of genomics research that had access to the most sophisticated informatics infrastructure, technical support, advice and training that was available.” Dr Snape continues to say, “The global success of Bio-Linux and the efforts of the NEBC team in promoting high quality training and data management standards has delivered above and beyond the original vision of the Environmental Genomics Steering Committee. NEBC truly adds value to the NERC environmental genomics research community.”

Barnaby Smith | alfa
Further information:
http://nebc.nox.ac.uk/biolinux.html
http://www.ceh.ac.uk

More articles from Information Technology:

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>