Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big data, smart data - a business with trust

06.08.2014

Siemens scientists are participating in a new research project that analyzes the various ways large amounts of data (big data) can be used commercially.

The goal of the EU's BYTE project is to produce a roadmap that includes specific steps that can be taken to enable Europe to increase its market share in the big data sector until 2020.


BYTE focuses on the development of political and technological measures that would allow the benefits of big data to be exploited to the greatest possible extent, while also minimizing negative effects with regard to aspects such as privacy.

BYTE picks up where the EU's BIG project left off. The latter identified business models and technologies for using big data. Along with Siemens, the project includes ten partners from industry and research.

The intelligent analysis of large amounts of data, and above all the merging of previously separate sets of information, offers huge potential. Industrial companies already use big data technology to identify energy savings potential, for example.

Such analyses become more difficult when several sources are involved - for example, when energy consumption data from all industrial facilities and private households in a particular region needs to be examined. This information can be used to draw conclusions regarding individuals' production or behavior, so its use must be regulated precisely and securely.

The greater the amount of data merged from various sources, the more varied will be the positive and negative impact of the data's use. BYTE brings together natural scientists, engineers, computer programmers, legal experts, sociologists, and economists in a team that uses various case studies to analyze all of these aspects of big data.

Scientists from Siemens' research department Corporate Technology (CT) are examining case studies in smart cities for the BYTE project. Siemens also refers to the associated data as smart data because the information comes from specialized environments such as cities, industrial facilities, and power plants, and the data they generate needs to be processed in a specific way in order to make it relevant.

In smart cities, for example, cell phones provide anonymous data on people's movements, cars generate data on traffic conditions, and smart meters enable predictions to be made regarding future energy requirements. Cities can use such data to reduce traffic or improve their carbon footprint - but without invading the privacy of their citizens while doing so. This will require the further development of the legal framework and various data protection technologies.

The Siemens researchers are working together with European cities on the analysis of big data applications at the interfaces between energy and transport. They are conducting interviews with experts from energy suppliers, municipal authorities, and public transport operators and working out the various aspects. Several Siemens units are working on solutions for smart cities including smart meters, building and energy management systems, and infrastructure for electric mobility. CT has also been managing the Aspern Smart City research project in Vienna since the summer of 2013.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: Big Data CT Smart Smart Cities energy programmers technologies

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>