Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big data, smart data - a business with trust

06.08.2014

Siemens scientists are participating in a new research project that analyzes the various ways large amounts of data (big data) can be used commercially.

The goal of the EU's BYTE project is to produce a roadmap that includes specific steps that can be taken to enable Europe to increase its market share in the big data sector until 2020.


BYTE focuses on the development of political and technological measures that would allow the benefits of big data to be exploited to the greatest possible extent, while also minimizing negative effects with regard to aspects such as privacy.

BYTE picks up where the EU's BIG project left off. The latter identified business models and technologies for using big data. Along with Siemens, the project includes ten partners from industry and research.

The intelligent analysis of large amounts of data, and above all the merging of previously separate sets of information, offers huge potential. Industrial companies already use big data technology to identify energy savings potential, for example.

Such analyses become more difficult when several sources are involved - for example, when energy consumption data from all industrial facilities and private households in a particular region needs to be examined. This information can be used to draw conclusions regarding individuals' production or behavior, so its use must be regulated precisely and securely.

The greater the amount of data merged from various sources, the more varied will be the positive and negative impact of the data's use. BYTE brings together natural scientists, engineers, computer programmers, legal experts, sociologists, and economists in a team that uses various case studies to analyze all of these aspects of big data.

Scientists from Siemens' research department Corporate Technology (CT) are examining case studies in smart cities for the BYTE project. Siemens also refers to the associated data as smart data because the information comes from specialized environments such as cities, industrial facilities, and power plants, and the data they generate needs to be processed in a specific way in order to make it relevant.

In smart cities, for example, cell phones provide anonymous data on people's movements, cars generate data on traffic conditions, and smart meters enable predictions to be made regarding future energy requirements. Cities can use such data to reduce traffic or improve their carbon footprint - but without invading the privacy of their citizens while doing so. This will require the further development of the legal framework and various data protection technologies.

The Siemens researchers are working together with European cities on the analysis of big data applications at the interfaces between energy and transport. They are conducting interviews with experts from energy suppliers, municipal authorities, and public transport operators and working out the various aspects. Several Siemens units are working on solutions for smart cities including smart meters, building and energy management systems, and infrastructure for electric mobility. CT has also been managing the Aspern Smart City research project in Vienna since the summer of 2013.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: Big Data CT Smart Smart Cities energy programmers technologies

More articles from Information Technology:

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

nachricht Smartphone case offers blood glucose monitoring on the go
08.12.2017 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>