Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big data, smart data - a business with trust

06.08.2014

Siemens scientists are participating in a new research project that analyzes the various ways large amounts of data (big data) can be used commercially.

The goal of the EU's BYTE project is to produce a roadmap that includes specific steps that can be taken to enable Europe to increase its market share in the big data sector until 2020.


BYTE focuses on the development of political and technological measures that would allow the benefits of big data to be exploited to the greatest possible extent, while also minimizing negative effects with regard to aspects such as privacy.

BYTE picks up where the EU's BIG project left off. The latter identified business models and technologies for using big data. Along with Siemens, the project includes ten partners from industry and research.

The intelligent analysis of large amounts of data, and above all the merging of previously separate sets of information, offers huge potential. Industrial companies already use big data technology to identify energy savings potential, for example.

Such analyses become more difficult when several sources are involved - for example, when energy consumption data from all industrial facilities and private households in a particular region needs to be examined. This information can be used to draw conclusions regarding individuals' production or behavior, so its use must be regulated precisely and securely.

The greater the amount of data merged from various sources, the more varied will be the positive and negative impact of the data's use. BYTE brings together natural scientists, engineers, computer programmers, legal experts, sociologists, and economists in a team that uses various case studies to analyze all of these aspects of big data.

Scientists from Siemens' research department Corporate Technology (CT) are examining case studies in smart cities for the BYTE project. Siemens also refers to the associated data as smart data because the information comes from specialized environments such as cities, industrial facilities, and power plants, and the data they generate needs to be processed in a specific way in order to make it relevant.

In smart cities, for example, cell phones provide anonymous data on people's movements, cars generate data on traffic conditions, and smart meters enable predictions to be made regarding future energy requirements. Cities can use such data to reduce traffic or improve their carbon footprint - but without invading the privacy of their citizens while doing so. This will require the further development of the legal framework and various data protection technologies.

The Siemens researchers are working together with European cities on the analysis of big data applications at the interfaces between energy and transport. They are conducting interviews with experts from energy suppliers, municipal authorities, and public transport operators and working out the various aspects. Several Siemens units are working on solutions for smart cities including smart meters, building and energy management systems, and infrastructure for electric mobility. CT has also been managing the Aspern Smart City research project in Vienna since the summer of 2013.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: Big Data CT Smart Smart Cities energy programmers technologies

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>