Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Bandwidth Management Techniques Boost Operating Efficiency In Multi-Core Chips

27.05.2011
Researchers from North Carolina State University have developed two new techniques to help maximize the performance of multi-core computer chips by allowing them to retrieve data more efficiently, which boosts chip performance by 10 to 40 percent.

To do this, the new techniques allow multi-core chips to deal with two things more efficiently: allocating bandwidth and “prefetching” data.

Multi-core chips are supposed to make our computers run faster. Each core on a chip is its own central processing unit, or computer brain. However, there are things that can slow these cores. For example, each core needs to retrieve data from memory that is not stored on its chip. There is a limited pathway – or bandwidth – these cores can use to retrieve that off-chip data. As chips have incorporated more and more cores, the bandwidth has become increasingly congested – slowing down system performance.

One of the ways to expedite core performance is called prefetching. Each chip has its own small memory component, called a cache. In prefetching, the cache predicts what data a core will need in the future and retrieves that data from off-chip memory before the core needs it. Ideally, this improves the core’s performance. But, if the cache’s prediction is inaccurate, it unnecessarily clogs the bandwidth while retrieving the wrong data. This actually slows the chip’s overall performance.

“The first technique relies on criteria we developed to determine how much bandwidth should be allotted to each core on a chip,” says Dr. Yan Solihin, associate professor of electrical and computer engineering at NC State and co-author of a paper describing the research. Some cores require more off-chip data than others. The researchers use easily-collected data from the hardware counters on each chip to determine which cores need more bandwidth. “By better distributing the bandwidth to the appropriate cores, the criteria are able to maximize system performance,” Solihin says.

“The second technique relies on a set of criteria we developed for determining when prefetching will boost performance and should be utilized,” Solihin says, “as well as when prefetching would slow things down and should be avoided.” These criteria also use data from each chip’s hardware counters. The prefetching criteria would allow manufacturers to make multi-core chips that operate more efficiently, because each of the individual cores would automatically turn prefetching on or off as needed.

Utilizing both sets of criteria, the researchers were able to boost multi-core chip performance by 40 percent, compared to multi-core chips that do not prefetch data, and by 10 percent over multi-core chips that always prefetch data.

The paper, “Studying the Impact of Hardware Prefetching and Bandwidth Partitioning in Chip-Multiprocessors,” will be presented June 9 at the International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS) in San Jose, Calif. The paper was co-authored by Dr. Fang Liu, a former Ph.D. student at NC State. The research was supported, in part, by the National Science Foundation.

NC State’s Department of Electrical and Computer Engineering is part of the university’s College of Engineering.

-shipman-

Note to Editors: The study abstract follows.

“Studying the Impact of Hardware Prefetching and Bandwidth Partitioning in Chip-Multiprocessors”

Authors: Fang Liu and Yan Solihin, North Carolina State University

Presented: June 9, 2011, at the International Conference on Measurement and Modeling of Computer Systems, San Jose, Calif.

Abstract: Modern high performance microprocessors widely employ hardware prefetching to hide long memory access latency. While useful, hardware prefetching tends to aggravate the bandwidth wall, a problem where system performance is increasingly limited by the availability of off-chip pin bandwidth in Chip Multi-Processors (CMPs). In this paper, we propose an analytical model-based study to investigate how hardware prefetching and memory bandwidth partitioning impact CMP system performance and how they interact. The model includes a composite prefetching metric that can help determine under which conditions prefetching can improve system performance, a bandwidth partitioning model that takes into account prefetching effects, and a derivation of the weighted speedup-optimum bandwidth partition sizes for different cores. Through model-driven case studies, we find several interesting observations that can be valuable for future CMP system design and optimization. We also explore simulation-based empirical evaluation to validate the observations and show that maximum system performance can be achieved by selective prefetching, guided by the composite prefetching metric, coupled with dynamic bandwidth partitioning.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Information Technology:

nachricht Making Waves
29.06.2017 | Institute of Science and Technology Austria

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>