Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award Will Lay Groundwork for Next Generation Computers

19.09.2008
Georgia Tech professor Karsten Schwan recently received a 2008 HP Labs Innovation Research Award to help solve some of the key problems in developing exascale machines that will process more than a million trillion calculations per second.

While most personal computers today can process a few hundred thousand calculations per second, computer scientists are laying the groundwork for exascale machines that will process more than a million trillion – or 10^18 – calculations per second. Just a few months ago, scientists reached the long-sought-after high-performance computing milestone of one petaflop by processing more than a thousand trillion – or 10^15 – calculations per second.

“The need for exascale-sized machines is well-established,” said Karsten Schwan, a professor in the School of Computer Science in the College of Computing at the Georgia Institute of Technology. “With exascale machines, weather simulations will be able to operate at finer resolution, biologists will be able to model more complex systems, and businesses will be able to run and manage many applications at the same time on a single large machine.”

Schwan recently received a 2008 HP Labs Innovation Research Award to work with HP Labs, HP’s central research arm, to help solve some of the key problems in developing exascale machines. The high-impact research award, one of only two granted for exascale research and 41 granted overall to professors around the world, encourages open collaboration with HP Labs. The award amount is renewable for a total of three years based on research progress and HP business requirements.

With the petaflop barrier broken, researchers like Schwan are focusing on the next goal – improving that processing power a thousandfold to reach the exascale. Schwan’s expertise in high performance and enterprise computing will help him solve some of the challenges surrounding exascale systems.

“We believe that machines will reach exascale size only by combining common chips – such as quad core processors – with special purpose chips – such as graphics accelerators,” said Schwan, who is also director of the Georgia Tech Center for Experimental Research in Computer Systems (CERCS).

A challenge that arises from this scenario is how to efficiently run programs on these heterogeneous many-core chips. To investigate possible methods for doing this, Schwan will team with Georgia Tech School of Electrical and Computer Engineering professor Sudhakar Yalamanchili, an expert in heterogeneous many-core platforms.

Exascale machines must also be able to run multiple systems and applications on a single platform at the same time, while guaranteeing that they will not interfere with each other. An approach called virtualization may help solve this challenge by hiding some of the underlying computer architecture issues from applications.

“With virtualization, decisions have to be made about where, when and for how long certain programs should run, but there are many ways of determining what might be appropriate because there might be multiple goals,” explained Schwan. “For instance, one might want to minimize the exascale machine’s power consumption while at the same time meet some performance goal for the application. In other words, virtualized systems must be actively ‘managed’ to attain end user, institutional or corporate goals.”

Ada Gavrilovska, a specialist in virtualization and multi-core operation and research scientist in the School of Computer Science in the College of Computing, will collaborate with Schwan to determine how to manage multiple programs on exascale machines that consist of hundreds of thousands of processors.

Though exascale machines are high-performance computing systems, the vision for these future systems goes beyond the typical vision painted for high performance computing. Instead of scaling a single program to run on hundreds of thousands of cores, exascale systems will also be used to run multiple programs on a single large machine.

“This future virtualized and managed exascale system will guarantee some level of service even when parts of the machine get too loaded or too hot or fail, since applications can be moved while they are running,” said Schwan.

Though it will be several years before exascale systems are developed, scientists at Georgia Tech will use the HP Labs Innovation Research Award to lay the foundation for solving emerging science and engineering challenges in national defense, energy assurance, advanced materials and climate.

“Around the world, HP partners with the best and the brightest in industry and academia to drive open innovation and set the agenda for breakthrough technologies that are designed to change the world,” said Prith Banerjee, senior vice president of research at HP and director of HP Labs. “HP Labs’ selection of Karsten Schwan for a 2008 Innovation Award demonstrates outstanding achievement and will help accelerate HP Labs’ global research agenda in pursuit of scientific breakthroughs.”

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>