Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial intelligence that imitates children's learning

23.09.2014

The computer programs used in the field of artificial intelligence (AI) are highly specialised. They can for example fly airplanes, play chess or assemble cars in controlled industrial environments.

However, a research team from Gothenburg, Sweden, has now been able to create an AI program that can learn how to solve problems in many different areas. The program is designed to imitate certain aspects of children’s cognitive development.


Claes Strannegård, Associate Professor, University of Gothenburg

Traditional AI programs lack the versatility and adaptability of human intelligence. For example, they cannot come into a new home and cook, clean and do laundry.

In artificial general intelligence (AGI), which is a new field within AI, scientists try to create computer programs with a generalised type of intelligence, enabling them to solve problems in vastly different areas. Gothenburg has a leading research team in this domain. In August, ‘exceptional contributions to the AGI field’ earned a team of researchers from the University of Gothenburg and Chalmers University of Technology the Kurzweil Prize for the second straight year.

No pre-existing knowledge

‘We have developed a program that can learn for example basic arithmetic, logic and grammar without any pre-existing knowledge,’ says Claes Strannegård, a member of the research team together with Abdul Rahim Nizamani and Ulf Persson.

The best example of general intelligence that we know of today is the human brain, and the scientists’ strategy has been to imitate, at a very fundamental level, how children develop intelligence. Children can learn a wide range of things. They build new knowledge based on previous knowledge and they can use their total knowledge to draw new conclusions. This is exactly what the scientists wanted their program to be able to do.

Children learn based on experience

‘We postulate that children learn everything based on experiences and that they are always looking for general patterns,’ says Strannegård.

A child who for example is learning multiplication and who knows that 2 x 0 = 0 and 3 x 0 = 0 can identify a pattern and conclude that also 17 x 0 = 0. However, sometimes this method backfires. If the child knows that 0 x 0 = 0 and 1 x 1 = 1, he or she can incorrectly conclude that 2 x 2 = 2. As soon as the child realises that a certain pattern can lead to incorrect conclusions, he or she can simply stop applying it.

Identify patterns

The child can in this way create a large number of patterns not only in mathematics but also in other areas such as logic and grammar. The patterns in a certain area can then be combined with each other and make it possible to solve entirely new problems. The programme developed by the Gothenburg scientists works in a similar manner. It can identify patterns by itself and therefore differs from programmes where a programmer has to formulate which rules the programme should apply.

‘We are hoping that this type of programme will eventually be useful in several different practical applications. Personally, I think a versatile household robot would be tremendously valuable, but we’re not there yet,’ says Strannegård.


The research team:
Claes Strannegård, Associate Professor at the Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, and at the Department of Applied Information Technology, Chalmers University of Technology

Abdul Rahim Nizamani, doctoral student at the Department of Applied Information Technology, University of Gothenburg
Ulf Persson, Professor at the Department of Mathematical Sciences, Chalmers University of Technology

Contact information:
Claes Strannegård, tel. +46 (0)707 527869, e-mail claes.strannegard@gu.se

Weitere Informationen:

http://gu.se/english/about_the_university/news-calendar/News_detail/?languageId=...

Henrik Axlid | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>