Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial intelligence that imitates children's learning

23.09.2014

The computer programs used in the field of artificial intelligence (AI) are highly specialised. They can for example fly airplanes, play chess or assemble cars in controlled industrial environments.

However, a research team from Gothenburg, Sweden, has now been able to create an AI program that can learn how to solve problems in many different areas. The program is designed to imitate certain aspects of children’s cognitive development.


Claes Strannegård, Associate Professor, University of Gothenburg

Traditional AI programs lack the versatility and adaptability of human intelligence. For example, they cannot come into a new home and cook, clean and do laundry.

In artificial general intelligence (AGI), which is a new field within AI, scientists try to create computer programs with a generalised type of intelligence, enabling them to solve problems in vastly different areas. Gothenburg has a leading research team in this domain. In August, ‘exceptional contributions to the AGI field’ earned a team of researchers from the University of Gothenburg and Chalmers University of Technology the Kurzweil Prize for the second straight year.

No pre-existing knowledge

‘We have developed a program that can learn for example basic arithmetic, logic and grammar without any pre-existing knowledge,’ says Claes Strannegård, a member of the research team together with Abdul Rahim Nizamani and Ulf Persson.

The best example of general intelligence that we know of today is the human brain, and the scientists’ strategy has been to imitate, at a very fundamental level, how children develop intelligence. Children can learn a wide range of things. They build new knowledge based on previous knowledge and they can use their total knowledge to draw new conclusions. This is exactly what the scientists wanted their program to be able to do.

Children learn based on experience

‘We postulate that children learn everything based on experiences and that they are always looking for general patterns,’ says Strannegård.

A child who for example is learning multiplication and who knows that 2 x 0 = 0 and 3 x 0 = 0 can identify a pattern and conclude that also 17 x 0 = 0. However, sometimes this method backfires. If the child knows that 0 x 0 = 0 and 1 x 1 = 1, he or she can incorrectly conclude that 2 x 2 = 2. As soon as the child realises that a certain pattern can lead to incorrect conclusions, he or she can simply stop applying it.

Identify patterns

The child can in this way create a large number of patterns not only in mathematics but also in other areas such as logic and grammar. The patterns in a certain area can then be combined with each other and make it possible to solve entirely new problems. The programme developed by the Gothenburg scientists works in a similar manner. It can identify patterns by itself and therefore differs from programmes where a programmer has to formulate which rules the programme should apply.

‘We are hoping that this type of programme will eventually be useful in several different practical applications. Personally, I think a versatile household robot would be tremendously valuable, but we’re not there yet,’ says Strannegård.


The research team:
Claes Strannegård, Associate Professor at the Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, and at the Department of Applied Information Technology, Chalmers University of Technology

Abdul Rahim Nizamani, doctoral student at the Department of Applied Information Technology, University of Gothenburg
Ulf Persson, Professor at the Department of Mathematical Sciences, Chalmers University of Technology

Contact information:
Claes Strannegård, tel. +46 (0)707 527869, e-mail claes.strannegard@gu.se

Weitere Informationen:

http://gu.se/english/about_the_university/news-calendar/News_detail/?languageId=...

Henrik Axlid | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>