Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New articles examine safety of airport security scanners

16.03.2011
The Transportation Security Administration (TSA) has begun to use whole-body imaging scanners as a primary screening measure on travelers passing through airport security checkpoints.

One type of scanner employs millimeter wave technology, which delivers no ionizing radiation. However, the second type of scanner currently deployed at airports uses backscatter X-rays that expose the individual being screened to very low levels of ionizing radiation. In the April issue of Radiology, two articles address the question of what potential long-term public health threats, if any, these backscatter X-ray systems pose.

In the first article, David J. Brenner, Ph.D., D.Sc., director of the Center for Radiological Research at Columbia University Medical Center in New York, N.Y., proposes that from a public health policy perspective, given that up to one billion such scans per year are now possible in the U.S, we should have concerns about the long-term consequences of an extremely large number of people being exposed to a potential radiation-induced cancer risk, no matter how slight.

"The risks for any individual going through the X-ray backscatter scanners are exceedingly small," Dr. Brenner said. "However, if all air travelers are going to be screened this way, then we need to be concerned that some of these billion people may eventually develop cancer as a result of the radiation exposure from the X-ray scanners."

In the second article, David A. Schauer, Sc.D., C.H.P., executive director of the National Council on Radiation Protection and Measurements (NCRP), argues that the summation of negligible average risks over large populations or time periods into a single value produces a distorted image of risk that is out of perspective with risks accepted every day, both voluntarily and involuntarily.

"There is no scientific basis to support the notion that a small risk to an individual changes in any way for that individual as others around him are also exposed to the same source of radiation," he said. "Critics of security screening acknowledge that doses from backscatter X-ray systems are very low and safe for an individual."

Dr. Schauer advocates strict regulatory control of the backscatter scanners in order to ensure that their use is consistent with the goals and objectives of radiation protection, which include justification (benefits exceed cost or harm), optimization (exposures are kept as low as reasonably achievable) and limitation (individual doses are limited).

"Any decision that alters the radiation exposure situation should do more good than harm," Dr. Schauer said. "In other words, people should only be exposed to ionizing radiation for security screening purposes when a threat exists that can be detected and for which appropriate actions can be taken. In addition, exposures must be justified and optimized."

Both Dr. Brenner and Dr. Schauer agree that the scanners using millimeter wave technology should be considered as a first option, since they are similar in cost and functionality to the backscatter machines, but do not expose the passenger to ionizing radiation. However, they also say that the average traveler should not be overly concerned about being screened with the backscatter scanners.

"As someone who travels just occasionally, I would have no hesitation in going through the X-ray backscatter scanner," Dr. Brenner said. "Super frequent fliers or airline personnel, who might go through the machine several hundred times each year, might wish to opt for pat-downs. The more scans you have, the more your risks may go up—but the individual risks are always going to be very, very small."

NCRP has recommended that backscatter X-ray systems adhere to an effective dose of 0.1 microsieverts (µSv) or less of ionizing radiation per scan, which roughly equates to the radiation exposure each passenger receives in under two minutes on the plane while flying at 30,000 feet. The average person in the U.S. receives an effective dose of about 3 millisieverts (3,000 µSv) per year from naturally occurring radioactive materials and cosmic radiation from outer space.

"Are X-ray Backscatter Scanners Safe for Airport Passenger Screening? For Most Individuals, Probably Yes, but a Billion Scans per Year Raises Long-Term Public Health Concerns." David J. Brenner, Ph.D., D.Sc.

"Does Security Screening with Backscatter X-rays Do More Good than Harm?" David A. Schauer, Sc.D., C.H.P.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For consumer-friendly information on radiation safety, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>