Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are squiggly lines the future of password security?

05.06.2014

Rutgers engineering researchers explore the security and memorability of free-form gestures as passwords

As more people use smart phones or tablets to pay bills, make purchases, store personal information and even control access to their houses, the need for robust password security has become more critical than ever.


Researchers studied the practicality of using free-form gestures for access authentication on smart phones and tablets. With the ability to create any shape in any size and location on the screen, the gestures had an inherent appeal as passwords. Since users create them without following a template, the researchers predicted these gestures would allow for greater complexity than grid-based gestures offer.

Credit: Michael Sherman, Gradeigh Clark, Yulong Yang, Shridatt Sugrim, Arttu Modig, Janne Lindqvist, Antti Oulasvirta, and Teemu Roos; Rutgers University, Max-Planck Institute for Informatics and University of Helsinki.

A new Rutgers University study shows that free-form gestures – sweeping fingers in shapes across the screen of a smart phone or tablet – can be used to unlock phones and grant access to apps. These gestures are less likely than traditional typed passwords or newer "connect-the-dots" grid exercises to be observed and reproduced by "shoulder surfers" who spy on users to gain unauthorized access.

"All it takes to steal a password is a quick eye," said Janne Lindqvist, one of the leaders of the project and an assistant professor in the School of Engineering's Department of Electrical and Computer Engineering. "With all the personal and transactional information we have on our phones today, improved mobile security is becoming increasingly critical."

Lindqvist believes this is the first study to explore free-form gestures as passwords. The researchers will publish their findings in June as part of the proceedings of MobiSys '14, a premier international conference in mobile computing.

In developing a secure solution to this problem, Lindqvist and the other researchers from Rutgers and collaborators from Max-Planck Institute for Informatics, including Antti Oulasvirta, and University of Helsinki studied the practicality of using free-form gestures for access authentication. With the ability to create any shape in any size and location on the screen, the gestures had an inherent appeal as passwords. Since users create them without following a template, the researchers predicted these gestures would allow for greater complexity than grid-based gestures offer.

"You can create any shape, using any number of fingers, and in any size or location on the screen," Lindqvist said. "We saw that this security protection option was clearly missing in the scientific literature and also in practice, so we decided to test its potential."

To do so, the researchers applied a generate-test-retest paradigm where 63 participants were asked to create a gesture, recall it, and recall it again 10 days later. The gestures were captured on a recognizer system designed by the team. Using this data, the authors tested the memorability of free-form gestures and invented a novel method to measure the complexity and accuracy of each gesture using information theory. Their analysis demonstrated results favorable to user-generated, free-form gestures as passwords.

To put their analysis to practice, the Rutgers researchers then had seven computer science and engineering students, each with considerable experience with touchscreens, attempt to steal a free-form gesture password by shoulder surfing.

None of the participants were able to replicate the gestures with enough accuracy, so while testing is in its preliminary stages, the gestures appear extremely powerful against attacks. While widespread adaptation of this technology is not yet clear, the research team plans to continue to analyze the security and management of free-form passwords in the future.

Diane Reed | Eurek Alert!
Further information:
http://www.rutgers.edu/

Further reports about: Lindqvist ability accuracy clear complexity fingers gesture gestures grid-based lines measure participants

More articles from Information Technology:

nachricht New technique controls autonomous vehicles on a dirt track
24.05.2016 | Georgia Institute of Technology

nachricht Engineers take first step toward flexible, wearable, tricorder-like device
24.05.2016 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>