Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are squiggly lines the future of password security?

05.06.2014

Rutgers engineering researchers explore the security and memorability of free-form gestures as passwords

As more people use smart phones or tablets to pay bills, make purchases, store personal information and even control access to their houses, the need for robust password security has become more critical than ever.


Researchers studied the practicality of using free-form gestures for access authentication on smart phones and tablets. With the ability to create any shape in any size and location on the screen, the gestures had an inherent appeal as passwords. Since users create them without following a template, the researchers predicted these gestures would allow for greater complexity than grid-based gestures offer.

Credit: Michael Sherman, Gradeigh Clark, Yulong Yang, Shridatt Sugrim, Arttu Modig, Janne Lindqvist, Antti Oulasvirta, and Teemu Roos; Rutgers University, Max-Planck Institute for Informatics and University of Helsinki.

A new Rutgers University study shows that free-form gestures – sweeping fingers in shapes across the screen of a smart phone or tablet – can be used to unlock phones and grant access to apps. These gestures are less likely than traditional typed passwords or newer "connect-the-dots" grid exercises to be observed and reproduced by "shoulder surfers" who spy on users to gain unauthorized access.

"All it takes to steal a password is a quick eye," said Janne Lindqvist, one of the leaders of the project and an assistant professor in the School of Engineering's Department of Electrical and Computer Engineering. "With all the personal and transactional information we have on our phones today, improved mobile security is becoming increasingly critical."

Lindqvist believes this is the first study to explore free-form gestures as passwords. The researchers will publish their findings in June as part of the proceedings of MobiSys '14, a premier international conference in mobile computing.

In developing a secure solution to this problem, Lindqvist and the other researchers from Rutgers and collaborators from Max-Planck Institute for Informatics, including Antti Oulasvirta, and University of Helsinki studied the practicality of using free-form gestures for access authentication. With the ability to create any shape in any size and location on the screen, the gestures had an inherent appeal as passwords. Since users create them without following a template, the researchers predicted these gestures would allow for greater complexity than grid-based gestures offer.

"You can create any shape, using any number of fingers, and in any size or location on the screen," Lindqvist said. "We saw that this security protection option was clearly missing in the scientific literature and also in practice, so we decided to test its potential."

To do so, the researchers applied a generate-test-retest paradigm where 63 participants were asked to create a gesture, recall it, and recall it again 10 days later. The gestures were captured on a recognizer system designed by the team. Using this data, the authors tested the memorability of free-form gestures and invented a novel method to measure the complexity and accuracy of each gesture using information theory. Their analysis demonstrated results favorable to user-generated, free-form gestures as passwords.

To put their analysis to practice, the Rutgers researchers then had seven computer science and engineering students, each with considerable experience with touchscreens, attempt to steal a free-form gesture password by shoulder surfing.

None of the participants were able to replicate the gestures with enough accuracy, so while testing is in its preliminary stages, the gestures appear extremely powerful against attacks. While widespread adaptation of this technology is not yet clear, the research team plans to continue to analyze the security and management of free-form passwords in the future.

Diane Reed | Eurek Alert!
Further information:
http://www.rutgers.edu/

Further reports about: Lindqvist ability accuracy clear complexity fingers gesture gestures grid-based lines measure participants

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>