Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Apps for Electric Cars

18.09.2014

Siemens is equipping electric cars with completely redesigned information and communications technology (ICT).

Basically, the idea is to control a variety of vehicle functions on a uniform, centralized computer platform instead of providing every system with its own hardware and software as today. The aim is to simplify the complicated interplay of the many assistance, safety, and infotainment systems.


In addition, separating the software from the technology on which it runs facilitates retrofitting new features. In the same way that apps use smartphones' existing technology, such as GPS or cameras for their own purposes, integrated standard components such as proximity sensors, control units, and display elements could be used for new functions in automobiles. The all-new ICT concept was developed by Siemens' global Corporate Technology (CT) department and its partners in the government-funded RACE project.

The new ICT architecture will simplify the introduction of new functions in electric cars. It will also make it more cost-effective and enable the features to be installed in small batches of vehicles. To test these possibilities in real-life, researchers at CT will introduce the new technology into a StreetScooter electric delivery vehicle by December 2014.

In addition to communications networks and software, the vehicle will receive a standardized computer platform developed by CT. Siemens will also provide the company StreetScooter with a software development environment that will allow it to incorporate new functions into the system and integrate them into the car. StreetScooter GmbH develops and produces electric vehicles for short runs. It is currently focusing on creating customized solutions for transport vehicles used for parcel delivery services or local public transportation, for example.

The RACE project has developed an electronics and software architecture for electric vehicles that represents a paradigm shift for automobile manufacturing. Previously, automotive systems such as anti-lock braking systems, parking aids or air-conditioning controls had all been independent, stand-alone units. A mid-range car contains more than 70 of these control units from a variety of suppliers.

Ensuring they all interact smoothly with one another is therefore a complicated process. For the RACE project, the researchers at Siemens CT not only developed the central computer platform and the communications technology, but also the software that brings all of the different systems together and ensures their failsafe operation. This also simplifies the integration of safety-related systems, such as those needed for autonomous driving.

The government-funded project RACE (Robust and Reliant Automotive Computing Environment for Future eCars) will run until the end of 2014. Siemens is the consortium leader. Partners include TRW Automotive, AVL Software and Functions, fortiss, the University of Stuttgart, TU München, RWTH Aachen University, and the Fraunhofer Institute for Applied and Integrated Security (AISEC).

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>