Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New anticensorship scheme could make it impossible to block individual sites

11.08.2011
A radical new approach to thwarting Internet censorship would essentially turn the whole web into a proxy server, making it virtually impossible for a censoring government to block individual sites.

The system is called Telex, and it is the brainchild of computer science researchers at the University of Michigan and the University of Waterloo in Canada. They will present it Aug. 12 at the USENIX Security Symposium in San Francisco.

"This has the potential to shift the arms race regarding censorship to be in favor of free and open communication," said J. Alex Halderman, assistant professor of computer science and engineering at U-M and one of Telex's developers.

"The Internet has the ability to catalyze change by empowering people through information and communication services. Repressive governments have responded by aggressively filtering it. If we can find ways to keep those channels open, we can give more people the ability to take part in free speech and access to information."

Today's typical anticensorship schemes get users around site blocks by routing them through an outside server called a proxy. But the censor can monitor the content of traffic on the whole network, and eventually finds and blocks the proxy, too.

"It creates a kind of cat and mouse game," said Halderman, who was at the blackboard explaining this to his computer and network security class when it hit him that there might be a different approach—a bigger way to think about the problem.

Here's how Telex would work:

Users install Telex software. Halderman envisions they could download it from an intermittently available website or borrow a copy from a friend.

Internet Service Providers (ISPs) outside the censoring nation deploy equipment called Telex stations.

When a user wants to visit a blacklisted site, he or she would establish a secure connection to an HTTPS website, which could be any password-protected site that isn't blocked. This is a decoy connection. The Telex software marks the connection as a Telex request by inserting a secret-coded tag into the page headers. The tag utilizes a cryptographic technique called "public-key steganography."

"Steganography is hiding the fact that you're sending a message at all," Halderman said. "We're able to hide it in the cryptographic protocol so that you can't even tell that the message is there."

The user's request passes through routers at various ISPs, some of which would be Telex stations. These stations would hold a private key that lets them recognize tagged connections from Telex clients. The stations would divert the connections so that the user could get to any site on the Internet.

Under this system, large segments of the Internet would need to be involved through participating ISPs.

"It would likely require support from nations that are friendly to the cause of a free and open Internet," Halderman said. "The problem with any one company doing this, for example, is they become a target. It's a collective action problem. You want to do it on a wide scale that makes connecting to the Internet almost an all or nothing proposition for the repressive state."

The researchers are at the proof-of-concept stage. They've developed software for researchers to experiment with. They've put up one Telex station on a mock ISP in their lab. They've been using it for their daily web browsing for the past four months and have tested it with a client in Beijing who was able to stream YouTube videos even though the site is blocked there.

The paper to be presented at USENIX Security is called "Telex: Anticensorship in the Network Infrastructure."

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>