Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A team at UPC creates an intelligent walker to assist the elderly and people undergoing medical rehabilitation

10.11.2008
A team of researchers from the Departments of Software, Automatic Control, Strength of MaMechanical Engineering, Materials and Structural Engineering at the Technical University of Catalonia (UPC), led by Ulises Cortés and Antonio B. Martínez, has designed an intelligent walker (i-Walker) that goes a step beyond conventional walkers as it can communicate with the user, think for itself and react to the environment.

The device can understand a set of voice commands and can be activated by means of simple verbal instructions given by the user (e.g., "take me to the kitchen"). To do this, it includes elements for independent movement and a personalized intelligent software agent.

This tool is based on intelligent multiagent systems technology (personal agents or software systems that observe and interact with their surroundings independently, proactively and rationally and have the ability to learn and communicate). It adapts to the specific assistance requirements of the people who use it and enhances their autonomy by helping them to take decisions that are usually beyond their scope due to physical, mobility or cognitive obstacles imposed by ageing or their illness.

The i-Walker can be used for medical rehabilitation as it can help in the recovery and strengthening of motor skills by allowing the amount of aid provided to the user to be adjusted under medical supervision. Parameters such as the effort made by the user in walking, the distance travelled and the calories burned during movement are recorded and measured by the walker. The system uses an accelerometer to detect possible falls, correct itineraries and turning angles and control braking.

The device is part of the European project Supported Human Autonomy for Recovery and Enhancement of Cognitive and Motor Abilities Using Information Technologies (SHARE-it), led by Ulises Cortés. The project is part of the Sixth Framework Programme and the Information Society Technologies programme, within the area of Ambient Assisted Living.

Universities, research centres, healthcare centres and companies from Spain, Italy, Germany and Romania are taking part in the project. They include UPC, the University of Malaga, the University of Bremen (Germany), Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (Germany), the Ana Aslan International Academy of Aging (Romania), Fondazione Santa Lucia (Italy), Centro Assistenza Domiciliare Azienda Sanitaria Locale RM B (Italy) and Telefónica Investigación y Desarrollo.

SHARE-it: Intelligent Mechanisms for the Home
The main objective of the SHARE-it project is to contribute to developing a new generation of intelligent and semiautonomous welfare technology systems that can be integrated in homes and other places such as hospitals and geriatric institutions. This is new technology that provides mobility support for people who require continuous assistance or monitoring to help them to live autonomously with the highest level of safety and comfort, in short, to increase their quality of life.

The technology includes systems for facilitating communication, intelligent behaviour and mobility support that are intuitive and can interpret the voice, sight, touch and gestures of the user. These systems can provide assistance to users in their daily activities and report their state of health to the people caring for them via monitoring and mobile systems.

Wheelchair and mobility platform
As well as the intelligent walker, the SHARE-it project is also developing other welfare devices: a semiautonomous wheelchair (Roland III) capable of operating both indoors and outdoors and an innovative semiautomatic platform (Spherik) based on a new type of spherical wheel designed for movement in small spaces.

The three mobile systems—walker, wheelchair and platform—can detect the position of the patient in the home and in other known environments such as hospitals and primary-care centres as they include a special monitoring system. They can also adapt their autonomy to the requirements of the user by means of a cognitive model based on interpretation of the information provided by the biosensors and on the person's disability profiles provided by a medical team. This allows them to provide the carers with continuous information on the user's state of health.

Technology that provides welfare
Welfare technology, particularly innovative technology for the elderly, is an emerging area of research in which there is a great need for innovation, especially considering that Spain will have the most elderly population on the planet by 2050 (43% of the population over the age of 60). Currently, 32% of people in Spain over the age of 65 suffer from some kind of disability. The link between age and disability is becoming stronger because life expectancy is increasing. People are living longer thanks to advances in medicine, but there are also more people who have survived severe illnesses and who suffer from chronic disability.

Robotics, artificial intelligence and information and communication technology—such as that included in the intelligent walker developed by UPC—can compensate for the loss of sensory, motor and cognitive functions caused by the passage of time and by disease in the elderly. They can also help to reinforce and stimulate human skills and improve well-being in daily life.

Rossy Laciana | alfa
Further information:
http://www.upc.edu/saladepremsa

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>