Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Surfboard Gets an Onboard Computer

20.08.2010
Computers are everywhere these days – even on surfboards. University of California, San Diego mechanical engineering undergraduates outfitted a surfboard with a computer and accompanying sensors -- one step toward a structural engineering Ph.D. student’s quest to develop the science of surfboards.

The UC San Diego mechanical engineering undergraduates installed a computer and sensors on a surfboard and recorded the speed of the water flowing beneath the board. While the students surfed, the onboard computer sent water velocity information to a laptop on shore in real time.

This is part of Benjamin Thompson’s quest to discover if surfboards have an optimal flexibility – a board stiffness that makes surfing as enjoyable as possible. Thompson is a UC San Diego structural engineering Ph.D. student studying the fluid-structure interaction between surfboards and waves. By outfitting a surfboard with sensors and electronics that shuttle data back to shore, the mechanical engineering undergraduates built some of the technological foundation for Thompson’s science-of-surfboards project.

Four undergraduates from the Department of Mechanical and Aerospace Engineering (MAE) at the UC San Diego Jacobs School of Engineering outfitted a surfboard with eight sensors and an onboard-computer or “microcontroller.” The students dug trenches into the board’s foam and ran wires connecting the sensors to the onboard computer. From this computer, the data travels via a wireless channel to a laptop on land – in this case, a beach in Del Mar, Calif.

The onboard computer also saves the data on a memory card.

“We were stoked to get good data and to be surfing for school,” said Dan Ferguson, one of the two mechanical engineering undergraduates who surfed while the onboard computer captured water velocity information and transmitted it back to land.

The four mechanical engineering majors built the wired surfboard for their senior design project, the culmination of the MAE 156 course sequence. Each project has a sponsor, and in this case, the sponsor was Benjamin Thompson, the structural engineering Ph.D. student from UC San Diego and founder of the surfboard Web site www.boardformula.com.

The onboard computer is in a watertight case the shape of a medium-sized box of chocolates. It sits at the front of the surfboard and glows blue. “What’s on your board? What is that?” fellow surfers asked Ferguson. “We’d have to tell them it’s a microprocessor connected to velocity sensors, and they would kind of nod and paddle away. It created a minor stir.”

Each of the eight sensors embedded into the bottom of the board is a “bend sensor.” The faster the water beneath the board moves, with respect to the board, the more the sensors bend, explained Trevor Owen, the other surfer on the four-person mechanical engineering team.

The data from the sensors runs through wires embedded in the board to the microcontroller. “You can see where we carved channels in the board,” said Owen.

The most interesting part of the project for senior mechanical engineering major Victor Correa was using the microcontrollers and wireless transmitters to get the data to land.

Thompson, the project sponsor, is already working on a smaller version of the onboard computer. He hopes to shrink it down to the size of a cell phone and embed it flush with the top surface of the board.

Assembling, waterproofing and installing the microcontroller, connecting it to the sensors, and successfully transmitting the collected data to a computer on land required persistence and a lot of learning, explained senior mechanical engineering major Julia Tsai. “Everything hypothetically should take five minutes, but everything took at least three hours.”

Even though the team has finished their class project, Ferguson plans to keep working with Thompson. “This project is going to apply some science that most likely [board] shapers understand pretty well...it’s going to settle the debates. It’s going to be black and white hard data to let them know for sure which ideas work, which concepts work, and why they work.”

Surfboard Flex
Surfboard flex refers to the temporary shape changes that surfboards are thought to undergo. While many surfers say flex makes their boards feel springy in the water, it has not been scientifically measured. Thompson hopes to scientifically document surfboard flex. Then he wants to determine if there is an amount of flexibility that enhances the performance and feel of a surfboard, and if this optimal flexibility depends on other factors such as surfer experience or wave conditions.

The surfboard project falls within a hot area of engineering research: the study of fluid-structure interactions. According to UC San Diego structural engineering professor Qiang Zhu, the study of fluid-structure interaction is important due to the large number of applications in mechanical, civil, aerospace and biological engineering. “In my opinion, its popularity in recent years is partly attributed to advances in experimental and computational techniques which allow many important processes to be studied in detail,” said Zhu.

This is what the UC San Diego engineers are doing for surfboards: they are studying how surfboards change shape when people ride them – and how those shape changes are tied to the subjective experience of surfing.

At the public presentation of their research, team member Tsai said, “I thought the coolest part was being able to test our board, going out to the beach to test it, everyone else had to stay downstairs in the lab.”

| Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>