Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A*STAR IME develops a silicon-based optical modulator for ultra fast telecommunications

05.06.2013
An affordable optical modulator to enable high-definition online gaming experience in real-time with multiple players from anywhere in the world

Imagine being able to download 10 high-definition movies (each of 4 GB capacity) in less than 1 second or be able to enjoy superior lag-free online gaming experience with multiple players from anywhere in the world.

Researchers from A*STAR Institute of Microelectronics (IME) have designed and developed a silicon-based optical modulator for ultra fast long-distance telecommunications. The device would enable 50% faster download speed than the latest Ethernet standard[1]. The technology can be realised with existing industry fabrication processes, paving way for affordable high speed data communications to the masses.

2. A modulator in an optical telecommunication network transforms electrical signals into optical signals. It performs one of the most critical steps as its switching speed in the signal conversion process dictates the overall rate at which data packets are sent out. In long distance optical communications, the quality of signals transmitted takes on greater significance ¯ a critical performance feature defined by the extinction ratio of the modulator.

3. At record-high extinction ratio of 5.5 dB with 50Gbps data speed, IME’s modulator exhibits the highest reported immunity against data distortion to deliver high quality optical signals over even longer distances. The modulator uses the on-off keying (OOK) format, which is widely used commercially. When this format is applied to advanced multilevel modulation format such as QPSK and DP-QPSK, the information capacity and total data communication can be increased to 100 Gbps and 200 Gbps, respectively. Compared to current state-of-the-art, IME’s modulator would need 50% less input power to impart optimised cooling, energy and cost savings in high-performance computing and data centres.

4. On the breakthrough, Dr Tu Xiaoguang, the IME scientist involved in the project, said, “By applying a novel structure design, our team was able to achieve a precisely-defined P-N junction profile that can reach high modulation speed without compromising optical signal quality, which has troubled designers in the past. This leads to the remarkable performance of the silicon modulator. Work is underway to develop new designs for pushing the switching speed further.”

5. Professor Dim-Lee Kwong, Executive Director of IME, said, “Silicon photonics offers promising solutions to marry photonic functionality with electronic intelligence. With the results achieved using CMOS technology, we expect IME’s silicon modulator to offer a distinct lead that is competitive with optical modulators in the market.”
About Institute of Microelectronics (IME)

The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information about IME, please visit http://www.ime.a-star.edu.sg.
About Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centre, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity. A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners. For more information about A*STAR, please visit http://www.a-star.edu.sg.

Media Contact:

SONG Shin Miin
Institute of Microelectronics
DID: +65 6770 5317
Email: songsm@ime.a-star.edu.sg

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>