Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A*STAR IME develops a silicon-based optical modulator for ultra fast telecommunications

05.06.2013
An affordable optical modulator to enable high-definition online gaming experience in real-time with multiple players from anywhere in the world

Imagine being able to download 10 high-definition movies (each of 4 GB capacity) in less than 1 second or be able to enjoy superior lag-free online gaming experience with multiple players from anywhere in the world.

Researchers from A*STAR Institute of Microelectronics (IME) have designed and developed a silicon-based optical modulator for ultra fast long-distance telecommunications. The device would enable 50% faster download speed than the latest Ethernet standard[1]. The technology can be realised with existing industry fabrication processes, paving way for affordable high speed data communications to the masses.

2. A modulator in an optical telecommunication network transforms electrical signals into optical signals. It performs one of the most critical steps as its switching speed in the signal conversion process dictates the overall rate at which data packets are sent out. In long distance optical communications, the quality of signals transmitted takes on greater significance ¯ a critical performance feature defined by the extinction ratio of the modulator.

3. At record-high extinction ratio of 5.5 dB with 50Gbps data speed, IME’s modulator exhibits the highest reported immunity against data distortion to deliver high quality optical signals over even longer distances. The modulator uses the on-off keying (OOK) format, which is widely used commercially. When this format is applied to advanced multilevel modulation format such as QPSK and DP-QPSK, the information capacity and total data communication can be increased to 100 Gbps and 200 Gbps, respectively. Compared to current state-of-the-art, IME’s modulator would need 50% less input power to impart optimised cooling, energy and cost savings in high-performance computing and data centres.

4. On the breakthrough, Dr Tu Xiaoguang, the IME scientist involved in the project, said, “By applying a novel structure design, our team was able to achieve a precisely-defined P-N junction profile that can reach high modulation speed without compromising optical signal quality, which has troubled designers in the past. This leads to the remarkable performance of the silicon modulator. Work is underway to develop new designs for pushing the switching speed further.”

5. Professor Dim-Lee Kwong, Executive Director of IME, said, “Silicon photonics offers promising solutions to marry photonic functionality with electronic intelligence. With the results achieved using CMOS technology, we expect IME’s silicon modulator to offer a distinct lead that is competitive with optical modulators in the market.”
About Institute of Microelectronics (IME)

The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information about IME, please visit http://www.ime.a-star.edu.sg.
About Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centre, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity. A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners. For more information about A*STAR, please visit http://www.a-star.edu.sg.

Media Contact:

SONG Shin Miin
Institute of Microelectronics
DID: +65 6770 5317
Email: songsm@ime.a-star.edu.sg

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>