Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A robot in every home?

24.09.2008
Observers like Bill Gates believe that by 2025 we could have robots in every home. In labs across Europe, researchers are creating designs that could become the robo-butler of the future.

Bill Gates likens the current state of robotics research to the earliest days of personal computing history when he formed the then fledging company Microsoft. Like the 1970s personal computer market, robotics designs and breakthroughs are following one another rapidly, and consumers are beginning to take an interest, too.

In Europe, as the rest of the world, there is s surge in robotics research, reflected in part by the European Network of Robotic Research (EURON), an EU-funded network of excellence that completed its work in May 2008.

It was an important network. The dozens of research programmes united by EURON (see related articles) represent a state-of-the-art in robotics, and a tantalising glimpse of the future.

That glimpse shows that researchers across Europe are creating new designs and tackling fundamental problems that eventually could lead to a world standard for domestic robots. Already enthusiasts are buying kits, making and programming their own robots.

In Japan, every year sees a new toy robot, while in the USA commercial robot vacuums like the Roomba are readily available.

But what will the robot butler of 2025 look like? Bruno Silciliano, a European robotics researcher and dissemination officer for EURON, believes there will be many different types of robots adapted to different purposes.

“In robotics, we have a whole taxonomy of robotics, differentiating field, service and industrial robots, and in the future there will be many designs for each of these domains,” he says.

In the domestic sphere, robot designs will range from the discreet vacuum cleaner that hides under a chair until required, to the fully realised mechanical maid. Current European research reflects this variety.

For example, the TASER created by the ‘informatics’ department of Hamburg University is an unwieldy but powerful creation that is helping researchers to develop robots that can grasp objects, operate light switches or open a door.

“One of the most interesting aspects of the TASER is that it coordinates mobility with two moving arms. With most robots, either the whole platform moves or their arms move, not both at once. But the TASER robot can move itself and its arms at the same time. This is a non-trivial problem and their work is very interesting,” explains Siciliano.

Quirl the windows please

The Quirl is a precursor of the robotic appliance. It looks nothing like a robot that one would imagine. Like the Roomba vacuum robot it is a simple, flat device that moves in a two dimensional world.

But it moves vertically, along glass, and cleans the windows as it goes along. It may not look like C3P0, but it indicates just how useful robots could be in the home or office of the future, particularly given the fact that, for example, solar panels work much more effectively when they are clean.

The Quirl is truly a breakthrough for the designers, the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart. When they began the quest for a window-cleaning robot, their first design weighed 6.5kg and was A3 in size. But the Quirl is the size of a postcard and weighs an incredible 600g. And it still cleans windows effectively.

With Quirls, Roombas and lawn-cutting robots multiplying, there will be a need to organise the mechanical workforce, and the Applied Autonomous Sensor Systems Lab at the Orebro University Sweden is working on an Ecology of Physically Embedded Intelligent Systems (PEIS).

The PEIS ecology coordinates a wide variety of robots, whether it is artificial intelligence in a refrigerator or a roaming butler. That researchers are already working on a ‘field marshal’ for the mechanical workforce is an indication of how rapidly domestic robotics is developing in every direction.

James the robot

James is a robot butler that looks like a mechanical version of ‘the hand’ from the movie and TV series of the Adams Family, but it can negotiate its way around obstacles and can grasp objects. It could lead to the development of assistive robots for the tetraplegic, for example.

Robots that work with and around humans will need to obey Asimov’s laws of robotics, and European researchers are working toward that end. The Kuka lightweight robotic arm is the first robot to obey Asimov’s first law of robotics: A robot may not injure a human being or, through inaction, allow a human being to come to harm.

The Kuka is safe in several respects. It is incredibly lightweight for its power, it weighs just 13kg, and it can lift its own weight. “Normally a robot arm that can lift 13kg would weigh 100 kilos or more,” explains Siciliano. So the Kuka is passively safe, in that it does not have the mass that usually causes injuries.

But the Kuka goes further; it carefully tracks its motion, using sensors in its joints. Finally, if the robot comes into contact with an object or person, its motors immediately start reversing direction, an impressive active safety system.

Systems like these will be absolutely essential if robots are to acquire the safety and reliability needed for widespread acceptance in the domestic sphere. Fortunately, European researchers are turning their attention to every aspect of domestic robotics.

Many of these robots have been funded through a variety of EU programmes. All of them benefited from networking.

This is part three of a special series of features exploring European robotics research, from humanoids friends, to functional home help, to just plain odd-bots.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90045

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>