Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A robot in every home?

24.09.2008
Observers like Bill Gates believe that by 2025 we could have robots in every home. In labs across Europe, researchers are creating designs that could become the robo-butler of the future.

Bill Gates likens the current state of robotics research to the earliest days of personal computing history when he formed the then fledging company Microsoft. Like the 1970s personal computer market, robotics designs and breakthroughs are following one another rapidly, and consumers are beginning to take an interest, too.

In Europe, as the rest of the world, there is s surge in robotics research, reflected in part by the European Network of Robotic Research (EURON), an EU-funded network of excellence that completed its work in May 2008.

It was an important network. The dozens of research programmes united by EURON (see related articles) represent a state-of-the-art in robotics, and a tantalising glimpse of the future.

That glimpse shows that researchers across Europe are creating new designs and tackling fundamental problems that eventually could lead to a world standard for domestic robots. Already enthusiasts are buying kits, making and programming their own robots.

In Japan, every year sees a new toy robot, while in the USA commercial robot vacuums like the Roomba are readily available.

But what will the robot butler of 2025 look like? Bruno Silciliano, a European robotics researcher and dissemination officer for EURON, believes there will be many different types of robots adapted to different purposes.

“In robotics, we have a whole taxonomy of robotics, differentiating field, service and industrial robots, and in the future there will be many designs for each of these domains,” he says.

In the domestic sphere, robot designs will range from the discreet vacuum cleaner that hides under a chair until required, to the fully realised mechanical maid. Current European research reflects this variety.

For example, the TASER created by the ‘informatics’ department of Hamburg University is an unwieldy but powerful creation that is helping researchers to develop robots that can grasp objects, operate light switches or open a door.

“One of the most interesting aspects of the TASER is that it coordinates mobility with two moving arms. With most robots, either the whole platform moves or their arms move, not both at once. But the TASER robot can move itself and its arms at the same time. This is a non-trivial problem and their work is very interesting,” explains Siciliano.

Quirl the windows please

The Quirl is a precursor of the robotic appliance. It looks nothing like a robot that one would imagine. Like the Roomba vacuum robot it is a simple, flat device that moves in a two dimensional world.

But it moves vertically, along glass, and cleans the windows as it goes along. It may not look like C3P0, but it indicates just how useful robots could be in the home or office of the future, particularly given the fact that, for example, solar panels work much more effectively when they are clean.

The Quirl is truly a breakthrough for the designers, the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart. When they began the quest for a window-cleaning robot, their first design weighed 6.5kg and was A3 in size. But the Quirl is the size of a postcard and weighs an incredible 600g. And it still cleans windows effectively.

With Quirls, Roombas and lawn-cutting robots multiplying, there will be a need to organise the mechanical workforce, and the Applied Autonomous Sensor Systems Lab at the Orebro University Sweden is working on an Ecology of Physically Embedded Intelligent Systems (PEIS).

The PEIS ecology coordinates a wide variety of robots, whether it is artificial intelligence in a refrigerator or a roaming butler. That researchers are already working on a ‘field marshal’ for the mechanical workforce is an indication of how rapidly domestic robotics is developing in every direction.

James the robot

James is a robot butler that looks like a mechanical version of ‘the hand’ from the movie and TV series of the Adams Family, but it can negotiate its way around obstacles and can grasp objects. It could lead to the development of assistive robots for the tetraplegic, for example.

Robots that work with and around humans will need to obey Asimov’s laws of robotics, and European researchers are working toward that end. The Kuka lightweight robotic arm is the first robot to obey Asimov’s first law of robotics: A robot may not injure a human being or, through inaction, allow a human being to come to harm.

The Kuka is safe in several respects. It is incredibly lightweight for its power, it weighs just 13kg, and it can lift its own weight. “Normally a robot arm that can lift 13kg would weigh 100 kilos or more,” explains Siciliano. So the Kuka is passively safe, in that it does not have the mass that usually causes injuries.

But the Kuka goes further; it carefully tracks its motion, using sensors in its joints. Finally, if the robot comes into contact with an object or person, its motors immediately start reversing direction, an impressive active safety system.

Systems like these will be absolutely essential if robots are to acquire the safety and reliability needed for widespread acceptance in the domestic sphere. Fortunately, European researchers are turning their attention to every aspect of domestic robotics.

Many of these robots have been funded through a variety of EU programmes. All of them benefited from networking.

This is part three of a special series of features exploring European robotics research, from humanoids friends, to functional home help, to just plain odd-bots.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90045

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>