Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A "Fat Forward" Research Tool

07.05.2010
TAU develops microscope-based cell scanner to speed research into fat-busting drugs

Anglers rely on fish finders to help them locate the big catch. Now Tel Aviv University researchers in tissue engineering have developed a "fat finder" that can help scientists accelerate their research into new fat-melting drugs.

The new software-based tool, reported in a recent issue of the journal Tissue Engineering, fits onto a microscope like a pair of goggles and allows a scientist to measure a broad number of physical parameters in the Petri dish while investigating fat cells. They might explore how fat cells change when given insulin, or how they react when treated with new experimental drug compounds. Normally these kinds of questions need to be investigated with intensive pre-clinical and clinical trials — an expensive and time-consuming process.

With the tool he invented, Prof. Amit Gefen of Tel Aviv University's Faculty of Engineering is able to address these questions at the cellular level — by looking at individual fat cells to see what happens to them under experimental conditions. The tool allows scientists to see and assess quickly what is happening to each cell, and how individual cells change over time. Until now, fat tissues were studied as a whole, with little knowledge as to how cells react one by one. But a look at individual cells gives clues about the toxicity or effectiveness of a treatment almost immediately.

Cell squats and push-ups

Prof. Gefen's new research looks at lab-engineered fat cells. "Good for studying fat, the 'fat finder' is also a general purpose tool. It can save researchers time and money and help them answer questions in basic research and drug design," he says.

Prof. Gefen's tool gives scientists the ability to accurately measure what happens in live cell cultures over time. Equipped with algorithms to measure baseline cellular activity and compare it to how cells being experimented on behave, his device helps understand how fat tissue develops, so that "optimal" tissue-engineered fat can be produced as a biological substitute for treating wounds and in plastic surgery procedures.

Prof. Gefen is now adding other components to the microscope, such as a laser-based scan that can see cell slices in three dimensions. From these slices, he can make a computer model of the actual cell. Once the cell is "inside" the computer, it can be stretched and compressed mechanically via software controls under very specific parameters.

This tells Prof. Gefen how fat cells in different parts of the body react to pressure due to immobility, for example. "Our starting point is the chronic wounds field, but if you're a brain researcher, you can use it to see how neurons respond to pressure," he says.

Tissue made to order

Dr. Gefen's interrelated tools open up many possibilities for basic biological research and drug development. Researchers will be able to "see" details of cellular events that can't be described by other methods. And the tools can help investigators planning drug studies and clinical trials to implement well-controlled and efficient tissue engineering protocols and experiments.

Until now Prof. Gefen's engineered fat cell cultures and software tool have been tested using animal cells, but Prof. Gefen plans to do similar studies based on human fat cells. In addition to helping drug developers come up with more effective anti-obesity drugs, Prof. Gefen's research seeks to know more about paraplegics and how their weight gain affects other cells and body processes. With this information in hand, he hopes to be able to devise better injury prevention and treatment regimens.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>