Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not a number: The choice is between the calculator and the personal computer

27.09.2013
The choice is between the calculator and the personal computer: Whoever has to plug numbers certainly expects a precise and above all reliable result. But how, when and from whom did computers actually learn how to correctly and logically string together numbers? William Kahan, guest speaker at the first Heidelberg Laureate Forum (HLF), is one pathfinder who taught the computer how to count.

Roughly thirty years ago, computers were still heavy and bulky. It was hardly imaginable back then that in just a few decades the large gray cabinets full of electric circuits and equipped with cathode ray tube monitors would become one of the most important technical ¡V and above all user-friendly ¡V everyday objects.

The computer is omnipresent in many daily situations; indeed we can hardly imagine life without it. This is particularly the case in the workplace where computers are used everywhere you look. They are used to design cars and bridges; they enable the global trade of stocks 24 hours a day; they are an important assistant in laboratories and they can be used to make telephone calls and take pictures. How did the computer become the leading machine in our lives? It did so because it is able to complete the most complex of calculations.

The high productivity of computers is due to the fact that they can calculate numbers with a complicate string of digits, such as the mathematical constant ¡§ƒà¡¨ (Pi), very quickly and with utmost precision. William Kahan, one of the pioneers of computer research, taught computers how to calculate numbers such as Pi. During the first Heidelberg Laureate Forum, the emeritus professor for computer sciences and mathematics, who teaches numerical analysis at the renowned University of California at Berkeley, will give a talk on the possibilities of error diagnosis in computer systems. 200 young researchers from all over the world will be in attendance to listen to William Kahan, and they will also have the chance to meet him personally during the week-long event.

The computer scientist, who after retiring from active teaching duties usually spends one or two days a week at the university, developed applicable standards that are still used today in every processor and thus can be found in any household worldwide. One example of such a standard is IEEE 754, which directs the computer to display ¡§Not a Number - NaN¡¨ as soon as the result of an arithmetic operation can no longer be defined. This happens, for example, if a number is divided by zero because a decimal point has been rounded incorrectly.

Rounding in and of itself is certainly a bit tricky. As we learned in school, rounding fractional digits too early can quickly lead to an incorrect result. While this might be tolerable for individual calculations, for more complex computing, such as weather forecasting, imprecision can lead to greater problems. Mathematicians call this error propagation, or in other words, the error reproduces itself. William Kahan developed a universally applicable standard that taught a computer how to round the fractional digits of a number the best possible way, thereby laying the foundation for the computer¡¦s ability to complete the most complex of calculations.

The Association of Computing Machinery (ACM) in the United States conferred the Turing Award on William Kahan in 1989 for his groundbreaking work on the standardization of computing operations. Today, during the first Heidelberg Laureate Forum, Kahan will speak on how error propagation can be dealt with in long computing operations. While such a phenomenon can still be justified slightly when it comes to weather forecasts, it cannot be tolerated in calculations for the aerospace industry: such things are a matter of life and death.

Background:
The Heidelberg Laureate Forum (HLF) was started by the Klaus Tschira Foundation (KTS), which promotes natural sciences, mathematics and computer sciences, and the Heidelberg Institute for Theoretical Studies (HITS). The Forum is being organized by the Heidelberg Laureate Forum Foundation in cooperation with the Association for Computing Machinery (ACM) of the International Mathematical Union (IMU) and the Norwegian Academy of Science and Letters.
To the editors:
With this press release, we would like to extend an invitation to attend the Forum as well as to report on the event. Thank you.
You will find an additional blog entry on William Kahan on our blog: www.scilogs.com/hlf/die-probleme-mit-den-rundungen/

For a photo of William Kahan, please contact:

Press inquiries:
Sabine Kluge
Communications
Heidelberg Laureate Forum Foundation
Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg
sabine.kluge@heidelberg-laureate-forum.org
Telephone: 06221-533 385
Weitere Informationen:
http://www.heidelberg-laureate-forum.org
http://www.facebook.com/HeidelbergLaureateForum
http://www.twitter.com/HLForum
http://www.scilogs.com/hlf

Sabine Kluge | idw
Further information:
http://www.heidelberg-laureate-forum.org
http://www.klaus-tschira-stiftung.de

Further reports about: ACM Gates Foundation HLF Pervasive Computing computer science natural science

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>