Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel hybrid UAV that may change the way people operate drones

28.03.2017

Two PhD students in National University of Singapore, Unmanned System Research Group spent four years in developing the novel hybrid unmanned aerial vehicles(UAV), U-Lion as shown in Figure 1. U-Lion is a hybrid UAV which can take-off and land vertically like helicopter UAVs, and transit to cruise flight like normal airplanes.

The wings can be fully retracted or expended, to favor the stability in VTOL mode or provide efficient lift in cruise flight. U-Lion is also able to fly autonomously includes vertical take-off and landing, cruise flight and autonomous transitions. The developed technology brings the application of hybrid UAVs one step closer.


Hybrid UAV U-Lion with three flying modes.

Credit: ©Science China Press

Their research result has been published in Science China Information Sciences, Volume 60, Issue 3, 2017. The research work is mainly done by Wang Kangli, Ke Yijie under the supervision of Professor Chen.

Over the last decades, hybrid UAV has attracted worldwide interest for their potential applications in military and civilian operations, especially where there are severe constraints in their operating environment, for example, sea surveillance or forest mapping.

The VTOL capability minimizes the dependency of the take-off and landing facilities and cruise flying capability allows hybrid UAVs to perform long range and duration tasks. The hybrid UAV is a hot research topic not only academically, but also commercially. Many companies have devoted resources in developing hybrid UAVs, such as Google Project Wing.

However, due to the great difference in the structure for VTOL UAVs and fixed-wing UAVs, it is a huge challenge to combine the two functionalities into one single UAV. Previous attempts of hybrid UAVs tend to focus on either one of the flying modes, but not optimal on both. Besides, due to the high uncertain aerodynamic forces in the transition process, the transition process is difficult to automate.

To achieve optimal performance in both flying modes, U-Lion is designed in tail-sitter configurations with reconfigurable wings and vectoring thrust. U-Lion could adopt different flying modes based on the mission requirements, and adjust the wings to achieve optimal performance.

The ability allows U-Lion to fly much longer than typical VTOL UAVs and possess greater maneuverability compared to normal fixed wing UAVs. Advanced modelling and control algorithm is also developed for overcoming the uncertainties in transition and achieve autonomous full envelope flight.

"U-Lion, the autonomous hybrid UAV, has great potentials in many applications." Said Kangli, "The VTOL capability has widened its application environment and cruise capability enables it to performance long range tasks. The autonomous capability relieves the dependency of experience pilots and further expands its applications."

"Being optimal in both flying modes, U-Lion may bring a new way people operates drones. The fast reaction and static hovering capabilities bring U-Lion great potential in many applications, the VTOL capability allows it to operate in almost anywhere, including on vehicles on the sea." Said Ke Yijie, "In five to ten years' time, hybrid UAV will change the way people operate in areas like forest mapping, sea surveillance, power line inspection and disaster reaction. Being one of the best hybrid UAV, U-Lion will certainly lead the trend for future applications!"

###

See the article: Wang K L, Ke Y J, Chen B M. Autonomous reconfigurable hybrid tail-sitter UAV U-Lion. Sci China Inf Sci, 2017, 60(3): 033201, doi: 10.1007/s11432-016-9002-x

https://link.springer.com/article/10.1007/s11432-016-9002-x

Science China Press

Wang Kangli | EurekAlert!

More articles from Information Technology:

nachricht Researchers illuminate the path to a new era of microelectronics
23.04.2018 | Boston University College of Engineering

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>