Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A low-cost, finger-nail sized radar

23.11.2012
EU-funded researchers have squeezed radar technology into a low-cost fingernail-sized chip package that promises to lead to a new range of distance and motion sensing applications. The novel device could have important uses in the automotive industry, as well as mobile devices, robotics and other applications.

Developed in the 'Silicon-based ultra-compact cost-efficient system design for mm-wave sensors' ( Success) project, the device is the most complete silicon-based 'system-on-chip' (SoC) package for radar operating at high frequencies beyond 100 GHz.

'As far as I know, this is the smallest complete radar system in the world,' says Prof. Christoph Scheytt, who is coordinating the project on behalf of IHP in Frankfurt, Germany. 'There are other chips working at frequencies beyond 100 GHz addressing radar sensing, but this is the highest level of integration that has ever been achieved in silicon.'

Measuring just 8 mm by 8 mm, the chip package is the culmination of three years of research by nine academic and industrial partners across Europe, supported by EUR 3 million in funding from the European Commission. The team drew on expertise from every part of the microelectronic development chain to develop the groundbreaking technology, which is expected to be put to use in commercial applications in the near future.

Operating at 120 GHz - corresponding to a wavelength of about 2.5 mm - the chip uses the run time of the waves to calculate the distance of an object up to around three metres away with an accuracy of less than one millimetre. It can also detect moving objects and calculate their velocity using the Doppler effect.

From a commercial perspective, the technology is also extremely cheap: manufactured on an industrial scale, each complete miniature radar would cost around one euro, the project partners estimate.

That gives it the potential to replace ultrasonic sensors for object and pedestrian detection in vehicles, to be used for automatic door control systems, to measure vibration or distance inside machines, for robotics applications and a wide range of other uses. It could even find its way into cell phones.

To develop the miniaturised radar system, the team had to overcome a range of technical challenges, not least integrating and ensuring the reliability of the tiny antenna.

'In this area, size matters a lot,' Prof. Scheytt notes. 'The main motivation for using high frequencies rather than lower ones is that the antennas can be smaller.'

While an FM radio has an antenna that's about one metre long and a WiFi router's antennas are about 10 cm in length, at mm-Wave frequencies (between 30 GHz and 300 GHz) the antennas can also be at the millimetre scale. Given the increasing miniaturisation of modern devices - from cell phones to robotics components - working in the millimetre range is therefore a significant advantage.

A novel substrate to solve attenuation

However, at high frequencies unwanted electromagnetic radiation and high attenuation are serious problems. 'The higher you go in frequency the more the wiring radiates: modelling this interface was a big challenge,' the project coordinator says.

The Success team addressed the issue through precise modelling, a novel technique for antenna integration, and using a polyamide substrate for the antenna.

'The project partners researched and tested a lot of different substrates for the antenna to find one that was the least lossy. Then they used a technique to print the antenna on it and connect it through solder bumps,' Prof. Scheytt explains. 'The antenna itself is planar, meaning it is mounted flat on top of the chip. This is completely different to the packaging technology of other millimetre-wave systems, which usually have bulky antennas with tube-like conductors. The advantage is that the whole "system-in-package" is a lot smaller.'

Another issue with high frequency devices is testing that they work as they are designed to. Current testing techniques are expensive and ill-suited to the high-volume testing necessary if the device is to be manufactured commercially. To address this, the Success team took the unusual step of including self-testing features built in to the chip package.

'Built-in self-testing is quite common for cell-phone chips that work at much lower frequencies, but it is something quite novel for millimetre-wave chips,' Prof. Scheytt says. 'Our industrial partners put a lot of emphasis on including this as it makes no sense to have a chip that can be manufactured for a euro and then have to spend 30 or 40 euro to test each one.'

The built-in test features enable technicians to easily and cheaply test if the antenna is connected correctly, the transmit power of the device and if it is operating in the right frequency range. And, because there is no radio frequency interface to deal with, integration onto a printed circuit board is similarly cheap and easy.

'Since all the high-frequency circuitry is in the package you have only low-frequency interfaces to work with,' Prof. Scheytt notes.

He points out that an application engineer can handle the chip, because it is a standard surface-mount package, in much the same way they would fit an ultrasonic sensor or microcontroller.

'Users can solder the chip onto their standard circuit boards and receive low-frequency signals that can be processed without difficulty,' says Prof. Thomas Zwick, head of IHE at the Karlsruhe Institute of Technology (KIT), a project partner.

The different partners in the Success consortium are now looking to use the technology commercially. Bosch, for example, is investigating deployment possibilities, seeing major potential for low-cost radar operating at high frequencies, while other partners, such as Silicon Radar in Germany, Selmic in Finland and Hightec in Switzerland are also expected to incorporate the work carried out in Success into their industrial processes.

Success received research funding under the European Union's Seventh Framework Programme (FP7).

Links to projects on CORDIS:

- FP7 on CORDIS - http://cordis.europa.eu/fp7/home_en.html
- Success project factsheet on CORDIS - http://cordis.europa.eu/projects/rcn/93756_en.html

Other links:

- European Commission's Digital Agenda website - http://ec.europa.eu/information_society/digital-agenda/index_en.htm

http://cordis.europa.eu/fetch?CALLER=OFFR_TM_EN&ACTION=D&DOC=1&CAT=OFFR&QUERY=013b2cfe6185:5edf:

23cc265e&RCN=9845

Kevin Prescott | alfa
Further information:
http://www.cordis.europa.eu

More articles from Information Technology:

nachricht Micropatterning OLEDs using electron beam technology
27.04.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Quantum computing closer as RMIT drives towards first quantum data bus
18.04.2016 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>