Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A human approach to computer processing

03.12.2008
A more human approach to processing raw data could change the way that computers deal with information, according to academics at The University of Nottingham.

Researchers in the School of Computer Science at the University’s Malaysia Campus are exploring ‘granular computing’ — a computer paradigm that looks at groups or sets of information, called information granules, rather than the high level of detail at which data is currently processed.

By looking at data in this way, new patterns and relationships emerge — which could potentially give us access to new types of computer modelling in a range of fields, including process control and optimisation, resource scheduling and bioinformatics.

The concept of a granular approach to computing is inspired by human thought processes, according to Professor Andrzej Bargiela, Director of Computer Science at Malaysia Campus.

“Creating abstractions from detailed information is essential to human knowledge, interaction and reasoning,” said Professor Bargiela. “The human brain filters the flood of information and distils knowledge subconsciously.”

“We can observe such an information processing pattern not only in scientific domains but also in fine arts and in natural language conversation. When an artist paints a picture they are not focussing on photographic accuracy, they focus on the artistic message — and use brushstrokes to simplify the reality in a way that is conducive to conveying that message. We remember conversations, but we don’t remember every word — the raw data — we remember the meaning, gist and nuance in other words the abstractions of the conversation. That is the basis for distilling human knowledge and understanding.

“We process a huge amount of information second by second. If we were aware of every single thing, our minds would be overloaded. The flood of information would choke us. The human mind uses the method of information abstraction to cope with the sensory overload of everyday life.”

It is thought that the granular computing approach to information processing may capture this essential characteristic of human information processing and offer a breakthrough in dealing with information overload in a broad spectrum of application domains. Several PhD projects supervised by Professor Bargiela test this hypothesis in the context of varied applications, including urban traffic monitoring and control, job scheduling, timetabling and protein classification. Other applications that will be explored in the near future include environmental modelling and assessment of potential of under-utilised crops.

“Technology allows us to capture an enormous amount of information, but making most of that information represents a significant challenge,” Professor Bargiela explained. “Over the last decade granular computing research has been gradually developing mathematical foundations for information granulation and granular modelling of systems. We have been part of this research development from the very nascent stages of granular computing. It is extremely exciting to see that the age-old paradigm of human information processing only just starts to be formalised as a well-founded method in computer science.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/A-human-approach-to-computer-processing.html

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

These could revolutionize the world

24.05.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>