Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A human approach to computer processing

03.12.2008
A more human approach to processing raw data could change the way that computers deal with information, according to academics at The University of Nottingham.

Researchers in the School of Computer Science at the University’s Malaysia Campus are exploring ‘granular computing’ — a computer paradigm that looks at groups or sets of information, called information granules, rather than the high level of detail at which data is currently processed.

By looking at data in this way, new patterns and relationships emerge — which could potentially give us access to new types of computer modelling in a range of fields, including process control and optimisation, resource scheduling and bioinformatics.

The concept of a granular approach to computing is inspired by human thought processes, according to Professor Andrzej Bargiela, Director of Computer Science at Malaysia Campus.

“Creating abstractions from detailed information is essential to human knowledge, interaction and reasoning,” said Professor Bargiela. “The human brain filters the flood of information and distils knowledge subconsciously.”

“We can observe such an information processing pattern not only in scientific domains but also in fine arts and in natural language conversation. When an artist paints a picture they are not focussing on photographic accuracy, they focus on the artistic message — and use brushstrokes to simplify the reality in a way that is conducive to conveying that message. We remember conversations, but we don’t remember every word — the raw data — we remember the meaning, gist and nuance in other words the abstractions of the conversation. That is the basis for distilling human knowledge and understanding.

“We process a huge amount of information second by second. If we were aware of every single thing, our minds would be overloaded. The flood of information would choke us. The human mind uses the method of information abstraction to cope with the sensory overload of everyday life.”

It is thought that the granular computing approach to information processing may capture this essential characteristic of human information processing and offer a breakthrough in dealing with information overload in a broad spectrum of application domains. Several PhD projects supervised by Professor Bargiela test this hypothesis in the context of varied applications, including urban traffic monitoring and control, job scheduling, timetabling and protein classification. Other applications that will be explored in the near future include environmental modelling and assessment of potential of under-utilised crops.

“Technology allows us to capture an enormous amount of information, but making most of that information represents a significant challenge,” Professor Bargiela explained. “Over the last decade granular computing research has been gradually developing mathematical foundations for information granulation and granular modelling of systems. We have been part of this research development from the very nascent stages of granular computing. It is extremely exciting to see that the age-old paradigm of human information processing only just starts to be formalised as a well-founded method in computer science.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/A-human-approach-to-computer-processing.html

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>