Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Dosimeter That Could Save Your Life, and It Fits in Your Wallet

06.07.2011
No matter how many plastic cards currently crowd your wallet, one day you may wish to make room for one more.

The Department of Homeland Security(DHS)'s Science and Technology Directorate (S&T) has developed a miniaturized version of a dosimeter, a portable device used for measuring exposure to ionizing radiation, which can provide life-saving early detection in the unlikely event of a nuclear accident or dirty bomb.

Dubbed the Citizen's Dosimeter, this high-tech plastic card would be as convenient and affordable as a subway card, with the capability to measure the amount of radiation on a person or in a given area.

The National Urban Security Technologies Laboratory (or NUSTL, pronounced new STEEL) located in New York City and managed by DHS S&T, has been awarded a patent that covers the development of radiation dosimetry technologies – DHS's first patent.

Currently, personal radiation dosimeter badges are worn in nuclear plants, but a plant dosimeter cannot be read on the spot; it must be sent to a processing lab to determine an individual's radiation dose. While a final prototype has not yet been built, a workable blueprint for a wallet-sized card that can detect radiation in real time is now in place.

"We were inspired by the Metro cards we use every day to get around Manhattan, and envisioned a dosimeter with that level of convenience," says Gladys Klemic, a NUSTL physicist who managed the project from Illinois. Klemic believes a dosimeter in this form could benefit both emergency responders and the general public.

Klemic and her team at NUSTL set out to create a dosimeter that would meet American National Standards Institute (ANSI) requirements for personal radiation dosimeter badges, and incorporate commercially available components to decrease the size and lower the price tag.

NUSTL began by using radiation-sensitive material from Landauer, Inc., a commercial dosimetry provider in Illinois, testing materials of varying thicknesses and combinations to determine how thin they could make the card while still achieving the targeted performance.

After testing nearly a half a dozen materials, the NUSTL scientists determined that using the chemical element tantalum allowed them to obtain accurate readings with minimal thickness. Combining this element in a unique double-layer, stainless steel filter helped to reduce false positives. It was this unique design that led to the patent award.

The next step is to develop a card reader to reveal the radiation dose measured by the Citizen's Dosimeter. In the event of a nuclear incident, first responders equipped with a card reader would immediately be able to measure radiation exposure for anyone carrying the Citizen's Dosimeter. While it will be years before a card and reader can be prototyped, tested, certified and wallet-ready, NUSTL has lined up a team to support the effort, including:

* Engineers at StorCard, a California-based group that has previously developed a prototype credit-card floppy disk and reader

* Nomadics, an Oklahoma engineering firm

* Radiation detection experts at Landauer and Oklahoma State University

The Citizen's Dosimeter represents a technological breakthrough and the next generation in radiation detection. It also demonstrates how public-private partnerships can work to produce life-saving solutions – in this case, protecting the nation from radiation resulting from an act of terrorism or natural disaster.

John Verrico | Newswise Science News
Further information:
http://www.dhs.gov

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>