Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Dosimeter That Could Save Your Life, and It Fits in Your Wallet

No matter how many plastic cards currently crowd your wallet, one day you may wish to make room for one more.

The Department of Homeland Security(DHS)'s Science and Technology Directorate (S&T) has developed a miniaturized version of a dosimeter, a portable device used for measuring exposure to ionizing radiation, which can provide life-saving early detection in the unlikely event of a nuclear accident or dirty bomb.

Dubbed the Citizen's Dosimeter, this high-tech plastic card would be as convenient and affordable as a subway card, with the capability to measure the amount of radiation on a person or in a given area.

The National Urban Security Technologies Laboratory (or NUSTL, pronounced new STEEL) located in New York City and managed by DHS S&T, has been awarded a patent that covers the development of radiation dosimetry technologies – DHS's first patent.

Currently, personal radiation dosimeter badges are worn in nuclear plants, but a plant dosimeter cannot be read on the spot; it must be sent to a processing lab to determine an individual's radiation dose. While a final prototype has not yet been built, a workable blueprint for a wallet-sized card that can detect radiation in real time is now in place.

"We were inspired by the Metro cards we use every day to get around Manhattan, and envisioned a dosimeter with that level of convenience," says Gladys Klemic, a NUSTL physicist who managed the project from Illinois. Klemic believes a dosimeter in this form could benefit both emergency responders and the general public.

Klemic and her team at NUSTL set out to create a dosimeter that would meet American National Standards Institute (ANSI) requirements for personal radiation dosimeter badges, and incorporate commercially available components to decrease the size and lower the price tag.

NUSTL began by using radiation-sensitive material from Landauer, Inc., a commercial dosimetry provider in Illinois, testing materials of varying thicknesses and combinations to determine how thin they could make the card while still achieving the targeted performance.

After testing nearly a half a dozen materials, the NUSTL scientists determined that using the chemical element tantalum allowed them to obtain accurate readings with minimal thickness. Combining this element in a unique double-layer, stainless steel filter helped to reduce false positives. It was this unique design that led to the patent award.

The next step is to develop a card reader to reveal the radiation dose measured by the Citizen's Dosimeter. In the event of a nuclear incident, first responders equipped with a card reader would immediately be able to measure radiation exposure for anyone carrying the Citizen's Dosimeter. While it will be years before a card and reader can be prototyped, tested, certified and wallet-ready, NUSTL has lined up a team to support the effort, including:

* Engineers at StorCard, a California-based group that has previously developed a prototype credit-card floppy disk and reader

* Nomadics, an Oklahoma engineering firm

* Radiation detection experts at Landauer and Oklahoma State University

The Citizen's Dosimeter represents a technological breakthrough and the next generation in radiation detection. It also demonstrates how public-private partnerships can work to produce life-saving solutions – in this case, protecting the nation from radiation resulting from an act of terrorism or natural disaster.

John Verrico | Newswise Science News
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>