Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new computer simulator allows to design military strategies based on ants' movements

10.11.2009
A researcher of the University of Granada has designed a new system for the mobility of military troops within a battlefield based on the mechanisms used by ant colonies to move using a commercial videogame.

This work, developed at the department of Computer Architecture and Technology of the UGR, has designed several algorithms that permit to look for the best route path (this is, to find the better route to satisfy certain criteria) within a particular environment.

Specifically, this research work has developed a software that would allow the army troops to define the best path within a military battle field, considering that such path will be covered by a company and this must consider the security criteria (reaching their destination with the lower number of casualties) and speed (reaching their destination as quickly as possible).

To that end, the scientists have used the so called 'ant colony optimization algorithm (ACO)', a probabilistic technique used to solve optimization problems and inspired in the behaviors of ants to find trajectories from the colony to the food.

A mini-simulator

This work has been carried out by Antonio Miguel Mora García, and supervised by professors Juan Julián Merelo Guervós and Pedro Ángel Castillo Valdivieso, of the department of Computer Architecture and Technology of the UGR.

The scientists of the UGR have developed a mini-simulator in order to define the settings (battlefields), locate the unit and their enemies, execute the algorithms and see the results. In addition, the software designed by them offers a few tools useful to analyze both the initial map and the results.

To prepare this system, Mora García started from the battlefields present in the videogame Panzer General™, defining later the necessary properties and restrictions to make them faithful to reality.

The research work developed at the University of Granada has also had the participation of members of the Doctrine and Training Command of the Spanish Army (MADOC), organism belonging to the Ministry of Defense, which in the long term could incorporate some of the features of the new simulator for the design of actual military strategies.

The UGR scientists point out that, apart form this application the simulator could also be useful to solve other actual problems, such as the search for the best path for a sales agent or a transporter to visit his clients optimizing fuel consumption or time, for example. "In addition –they say- it could also be useful to solve planning problems for the distribution of goods, trying to serve the highest possible number of customers starting from a central warehouse, considering the lowest possible number of vehicles".

Part of the results of this research work has been presented in several conferences, both national and international, and published in journals such as "International Journal of Intelligent Systems". The software designed for this research work is free software, and it can be downloaded though the Internet freely.

Reference:
Antonio Miguel Mora García.
Department of Computer Architecture and Technology
of the University of Granada.
Phone number: +34 958 240 838.
Mobile: +34 605 350 078
E-mail: amorag@geneura.ugr.es

Antonio Miguel Mora García | EurekAlert!
Further information:
http://www.ugr.es

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>