Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First 3-D processor runs at 1.4 Ghz on new architecture

16.09.2008
'Rochester Cube' points way to more powerful chip designs

The next major advance in computer processors will likely be the move from today's two-dimensional chips to three-dimensional circuits, and the first three-dimensional synchronization circuitry is now running at 1.4 gigahertz at the University of Rochester.

Unlike past attempts at 3-D chips, the Rochester chip is not simply a number of regular processors stacked on top of one another. It was designed and built specifically to optimize all key processing functions vertically, through multiple layers of processors, the same way ordinary chips optimize functions horizontally. The design means tasks such as synchronicity, power distribution, and long-distance signaling are all fully functioning in three dimensions for the first time.

"I call it a cube now, because it's not just a chip anymore," says Eby Friedman, Distinguished Professor of Electrical and Computer Engineering at Rochester and faculty director of the pro of the processor. "This is the way computing is going to have to be done in the future. When the chips are flush against each other, they can do things you could never do with a regular 2-D chip."

Friedman, working with engineering student Vasilis Pavlidis, says that many in the integrated circuit industry are talking about the limits of miniaturization, a point at which it will be impossible to pack more chips next to each other and thus limit the capabilities of future processors'. He says a number of integrated circuit designers anticipate someday expanding into the third dimension, stacking transistors on top of each other.

But with vertical expansion will come a host of difficulties, and Friedman says the key is to design a 3-D chip where all the layers interact like a single system. Friedman says getting all three levels of the 3-D chip to act in harmony is like trying to devise a traffic control system for the entire United States—and then layering two more United States above the first and somehow getting every bit of traffic from any point on any level to its destination on any other level—while simultaneously coordinating the traffic of millions of other drivers.

Complicate that by changing the two United States layers to something like China and India where the driving laws and roads are quite different, and the complexity and challenge of designing a single control system to work in any chip begins to become apparent, says Friedman.

Since each layer could be a different processor with a different function, such as converting MP3 files to audio or detecting light for a digital camera, Friedman says that the 3-D chip is essentially an entire circuit board folded up into a tiny package. He says the chips inside something like an iPod could be compacted to a tenth their current size with ten times the speed.

What makes it all possible is the architecture Friedman and his students designed, which uses many of the tricks of regular processors, but also accounts for different impedances that might occur from chip to chip, different operating speeds, and different power requirements. The fabrication of the chip is unique as well. Manufactured at MIT, the chip must have millions of holes drilled into the insulation that separates the layers in order to allow for the myriad vertical connections between transistors in different layers.

"Are we going to hit a point where we can't scale integrated circuits any smaller? Horizontally, yes," says Friedman. "But we're going to start scaling vertically, and that will never end. At least not in my lifetime. Talk to my grandchildren about that."

The next major advance in computer processors will likely be the move from today's two-dimensional chips to three-dimensional circuits, and the first three-dimensional synchronization circuitry is now running at 1.4 gigahertz at the University of Rochester.

Unlike past attempts at 3-D chips, the Rochester chip is not simply a number of regular processors stacked on top of one another. It was designed and built specifically to optimize all key processing functions vertically, through multiple layers of processors, the same way ordinary chips optimize functions horizontally. The design means tasks such as synchronicity, power distribution, and long-distance signaling are all fully functioning in three dimensions for the first time.

"I call it a cube now, because it's not just a chip anymore," says Eby Friedman, Distinguished Professor of Electrical and Computer Engineering at Rochester and faculty director of the pro of the processor. "This is the way computing is going to have to be done in the future. When the chips are flush against each other, they can do things you could never do with a regular 2-D chip."

Friedman, working with engineering student Vasilis Pavlidis, says that many in the integrated circuit industry are talking about the limits of miniaturization, a point at which it will be impossible to pack more chips next to each other and thus limit the capabilities of future processors'. He says a number of integrated circuit designers anticipate someday expanding into the third dimension, stacking transistors on top of each other.

But with vertical expansion will come a host of difficulties, and Friedman says the key is to design a 3-D chip where all the layers interact like a single system. Friedman says getting all three levels of the 3-D chip to act in harmony is like trying to devise a traffic control system for the entire United States—and then layering two more United States above the first and somehow getting every bit of traffic from any point on any level to its destination on any other level—while simultaneously coordinating the traffic of millions of other drivers.

Complicate that by changing the two United States layers to something like China and India where the driving laws and roads are quite different, and the complexity and challenge of designing a single control system to work in any chip begins to become apparent, says Friedman.

Since each layer could be a different processor with a different function, such as converting MP3 files to audio or detecting light for a digital camera, Friedman says that the 3-D chip is essentially an entire circuit board folded up into a tiny package. He says the chips inside something like an iPod could be compacted to a tenth their current size with ten times the speed.

What makes it all possible is the architecture Friedman and his students designed, which uses many of the tricks of regular processors, but also accounts for different impedances that might occur from chip to chip, different operating speeds, and different power requirements. The fabrication of the chip is unique as well. Manufactured at MIT, the chip must have millions of holes drilled into the insulation that separates the layers in order to allow for the myriad vertical connections between transistors in different layers.

"Are we going to hit a point where we can't scale integrated circuits any smaller? Horizontally, yes," says Friedman. "But we're going to start scaling vertically, and that will never end. At least not in my lifetime. Talk to my grandchildren about that."

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

Further reports about: 3-D chips 3-D processor MP3 MP3 files control system digital camera traffic control

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>