Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


3-D Gesture-Based Interaction System Unveiled

Touch screens such as those found on the iPhone or iPad are the latest form of technology allowing interaction with smart phones, computers and other devices.

However, scientists at Fraunhofer FIT has developed the next generation noncontact gesture and finger recognition system. The novel system detects hand and finger positions in real-time and translates these into appropriate interaction commands. Furthermore, the system does not require special gloves or markers and is capable of supporting multiple users.

The system detects the hands and fingers in real-time. Source: Fraunhofer FIT

With touch screens becoming increasingly popular, classic interaction techniques such as a mouse and keyboard are becoming less frequently used. One example of a breakthrough is the Apple iPhone which was released in summer 2007. Since then many other devices featuring touch screens and similar characteristics have been successfully launched – with more advanced devices even supporting multiple users simultaneously, e.g. the Microsoft Surface table becoming available. This is an entire surface which can be used for input. However, this form of interaction is specifically designed for two-dimensional surfaces.

Fraunhofer FIT has developed the next generation of multi-touch environment, one that requires no physical contact and is entirely gesture-based. This system detects multiple fingers and hands at the same time and allows the user to interact with objects on a display. The users move their hands and fingers in the air and the system automatically recognizes and interprets the gestures accordingly.

Cinemagoers will remember the science-fiction thriller Minority Report from 2002 which starred Tom Cruise. In this film Tom Cruise is in a 3-D software arena and is able to interact with numerous programs at unimaginable speed, however the system used special gloves and only three fingers from each hand.

The FIT prototype provides the next generation of gesture-based interaction far in advance of the Minority Report system. The FIT prototype tracks the user's hand in front of a 3-D camera. The 3-D camera uses the time of flight principle, in this approach each pixel is tracked and the length of time it takes light to be filmed travelling to and from the tracked object is determined. This allows for the calculation of the distance between the camera and the tracked object.

"A special image analysis algorithm was developed which filters out the positions of the hands and fingers. This is achieved in real-time through the use of intelligent filtering of the incoming data. The raw data can be viewed as a kind of 3-D mountain landscape, with the peak regions representing the hands or fingers." said Georg Hackenberg, who developed the system as part of his Master's thesis. In addition plausibility criteria are used, these are based around: the size of a hand, finger length and the potential coordinates.

A user study was conducted and found that the system both easy to use and fun. However, work remains to be done on removing elements which confuses the system, for example reflections caused by wristwatches and palms which are positioned orthogonal to the camera.

"With Microsoft announcing Project Natal, it is likely that similar techniques will very soon become standard across the gaming industry. This technology also opens up the potential for new solutions in the range of other application domains, such as the exploration of complex simulation data and for new forms of learning," predicts Prof. Dr. Wolfgang Broll of the Fraunhofer Institute for Applied Information Technology FIT.

Alex Deeg | Fraunhofer-Institut
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>