Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

25 years of conventional evaluation of data analysis proves worthless in practice

05.09.2008
So-called ‘intelligent’ computer-based methods for classifying patient samples, for example, have been evaluated with the help of two methods that have completely dominated research for 25 years.

Now Swedish researchers at Uppsala University are revealing that this methodology is worthless when it comes to practical problems. The article is published in the journal Pattern Recognition Letters.

Today there is rapidly growing interest in ‘intelligent’ computer-based methods that use various classes of measurement signals, from different patient samples, for instance, to create a model for classifying new observations. This type of method is the basis for many technical applications, such as recognition of human speech, images, and fingerprints, and is now also beginning to attract new fields such as health care.

“Especially in applications in which faulty classification decisions can lead to catastrophic consequences, such as choosing the wrong form of therapy for treating cancer, it is extremely important to be able to make a reliable estimate of the performance of the classification model,” explains Mats Gustafsson, Professor of signal processing and medical bioinformatics at Uppsala University, who co-directed the new study together with Associate Professor Anders Isaksson.

To evaluate the performance of a classification model, one normally tests it on a number of trial examples that have never been involved in the design of the model. Unfortunately there are seldom tens of thousands of test examples available for this type of evaluation. In biomedicine, for instance, it is often expensive and difficult to collect the patient samples needed, especially if one wishes to analyze a rare disease. To solve this problem, many different methods have been proposed. Since the 1980s two methods have completely dominated research, namely, cross validation and resampling/bootstrapping.

“This has entailed that the performance assessment of virtually all new methods and applications reported in the scientific literature in the last 25 years has been carried out using one of these two methods,” says Mats Gustafsson.

In the new study, the Uppsala researchers use both theory and convincing computer simulations to show that this methodology is worthless in practice when the total number of examples is small in relation to the natural variation that exists among different observations. What is considered a small number depends in turn on what problem is being studied-­in other words, it is impossible to determine whether the number of examples is sufficient.

“Our main conclusion is that this methodology cannot be depended on at all, and that it therefore needs to be immediately replaces by Bayesian methods, for example, which can deliver reliable measures of the uncertainty that exists. Only then will multivariate analyses be in any position to be adopted in such critical applications as health care,” says Mats Gustafsson.

Mats Gustafsson | alfa
Further information:
http://www.uu.se

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>