Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


25 years of conventional evaluation of data analysis proves worthless in practice

So-called ‘intelligent’ computer-based methods for classifying patient samples, for example, have been evaluated with the help of two methods that have completely dominated research for 25 years.

Now Swedish researchers at Uppsala University are revealing that this methodology is worthless when it comes to practical problems. The article is published in the journal Pattern Recognition Letters.

Today there is rapidly growing interest in ‘intelligent’ computer-based methods that use various classes of measurement signals, from different patient samples, for instance, to create a model for classifying new observations. This type of method is the basis for many technical applications, such as recognition of human speech, images, and fingerprints, and is now also beginning to attract new fields such as health care.

“Especially in applications in which faulty classification decisions can lead to catastrophic consequences, such as choosing the wrong form of therapy for treating cancer, it is extremely important to be able to make a reliable estimate of the performance of the classification model,” explains Mats Gustafsson, Professor of signal processing and medical bioinformatics at Uppsala University, who co-directed the new study together with Associate Professor Anders Isaksson.

To evaluate the performance of a classification model, one normally tests it on a number of trial examples that have never been involved in the design of the model. Unfortunately there are seldom tens of thousands of test examples available for this type of evaluation. In biomedicine, for instance, it is often expensive and difficult to collect the patient samples needed, especially if one wishes to analyze a rare disease. To solve this problem, many different methods have been proposed. Since the 1980s two methods have completely dominated research, namely, cross validation and resampling/bootstrapping.

“This has entailed that the performance assessment of virtually all new methods and applications reported in the scientific literature in the last 25 years has been carried out using one of these two methods,” says Mats Gustafsson.

In the new study, the Uppsala researchers use both theory and convincing computer simulations to show that this methodology is worthless in practice when the total number of examples is small in relation to the natural variation that exists among different observations. What is considered a small number depends in turn on what problem is being studied-­in other words, it is impossible to determine whether the number of examples is sufficient.

“Our main conclusion is that this methodology cannot be depended on at all, and that it therefore needs to be immediately replaces by Bayesian methods, for example, which can deliver reliable measures of the uncertainty that exists. Only then will multivariate analyses be in any position to be adopted in such critical applications as health care,” says Mats Gustafsson.

Mats Gustafsson | alfa
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>