Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


25 years of conventional evaluation of data analysis proves worthless in practice

So-called ‘intelligent’ computer-based methods for classifying patient samples, for example, have been evaluated with the help of two methods that have completely dominated research for 25 years.

Now Swedish researchers at Uppsala University are revealing that this methodology is worthless when it comes to practical problems. The article is published in the journal Pattern Recognition Letters.

Today there is rapidly growing interest in ‘intelligent’ computer-based methods that use various classes of measurement signals, from different patient samples, for instance, to create a model for classifying new observations. This type of method is the basis for many technical applications, such as recognition of human speech, images, and fingerprints, and is now also beginning to attract new fields such as health care.

“Especially in applications in which faulty classification decisions can lead to catastrophic consequences, such as choosing the wrong form of therapy for treating cancer, it is extremely important to be able to make a reliable estimate of the performance of the classification model,” explains Mats Gustafsson, Professor of signal processing and medical bioinformatics at Uppsala University, who co-directed the new study together with Associate Professor Anders Isaksson.

To evaluate the performance of a classification model, one normally tests it on a number of trial examples that have never been involved in the design of the model. Unfortunately there are seldom tens of thousands of test examples available for this type of evaluation. In biomedicine, for instance, it is often expensive and difficult to collect the patient samples needed, especially if one wishes to analyze a rare disease. To solve this problem, many different methods have been proposed. Since the 1980s two methods have completely dominated research, namely, cross validation and resampling/bootstrapping.

“This has entailed that the performance assessment of virtually all new methods and applications reported in the scientific literature in the last 25 years has been carried out using one of these two methods,” says Mats Gustafsson.

In the new study, the Uppsala researchers use both theory and convincing computer simulations to show that this methodology is worthless in practice when the total number of examples is small in relation to the natural variation that exists among different observations. What is considered a small number depends in turn on what problem is being studied-­in other words, it is impossible to determine whether the number of examples is sufficient.

“Our main conclusion is that this methodology cannot be depended on at all, and that it therefore needs to be immediately replaces by Bayesian methods, for example, which can deliver reliable measures of the uncertainty that exists. Only then will multivariate analyses be in any position to be adopted in such critical applications as health care,” says Mats Gustafsson.

Mats Gustafsson | alfa
Further information:

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>