Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 167-processor Chip Is Super-fast, Ultra Energy-efficient

23.04.2009
A new, extremely energy-efficient processor chip that provides breakthrough speeds for a variety of computing tasks has been designed by a group at UC Davis. The chip, dubbed AsAP, is ultra-small, fully reprogrammable and highly configurable, so it can be widely adapted to a number of applications.

The chip is designed for digital signal processing. While not the principal kind of processor chip used in desktop computers, digital signal processing chips are found in a myriad of everyday and specialized devices such as cell phones, MP3 music players, video equipment, anti-lock brakes and ultrasound and MRI medical imaging machines.

Maximum clock speed for the 167-processor AsAP is 1.2 gigahertz (GHz), but at slower speeds its energy efficiency soars. Twelve chips working together could perform more than half-a-trillion operations per second (.52 Tera-ops/sec) while using less power than a 7-watt light bulb.

“A battery powering this chip will typically last from several times to 75 times longer than it would under the same workload when powering some of the common commercially available digital signal processing chips,” said Bevan Baas, associate professor of electrical and computer engineering and leader of the design team. “At the same time, with our targeted applications, we’re getting several times to 10 times better speed than what is currently available — all with a much smaller chip. To the best of our knowledge, this is the highest clock-rate processor chip designed at any university.”

Built with industry-standard fabrication technology and design tools, the chip embodies a number of novel architectural and circuit features, Baas explained. Throughout the design process, his group took energy efficiency and high speed into consideration. “These were two of our main objectives, which we never gave up on during the planning stages. And all those choices added up,” he said.

Baas’ group has written a number of software applications for the chip, which has been fabricated by the international electronics company STMicrotronics. It took one student just three months to write “a fully compliant Wi-Fi transmitter,” Baas said. They have also written a Wi-Fi receiver and several complex components of an H.264 video encoder. After testing the chip extensively, it has worked without a glitch, Baas added.

The group made a brief announcement about the chip in June 2008 at the Symposium on VLSI Circuits in Honolulu, and details of its design have just been published in the April issue of IEEE Journal of Solid-State Circuits.

The following collaborators on the design of AsAP were graduate students in Baas’ group when they did the work: Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Anthony Jacobson, Gouri Landge, Michael Meeuwsen, Christine Watnik, Anh Tran, Zhibin Xiao Jeremy Webb, Eric Work, Jeremy Webb and Paul Mejia.

Support for the work came from STMicroelectronics, Intel Inc., University of California MICRO, the National Science Foundation, Semiconductor Research Corporation, IntellaSys and the Vietnam Education Foundation.

Liese Greensfelder | EurekAlert!
Further information:
http://www.ucdavis.edu
http://www.news.ucdavis.edu/search/news_detail.lasso?id=9082

More articles from Information Technology:

nachricht Quantum Technology for Advanced Imaging – QUILT
24.04.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Paint job transforms walls into sensors, interactive surfaces
24.04.2018 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>