Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Virtual satellite dish' thanks to lots of simple processors working together

19.10.2010
Satellite TV without having to set up a receiver dish. Digital radio on your mobile phone without your batteries quickly running flat.

The advanced calculations needed for these future applications are made possible by a microchip with relatively simple processors that can interact and communicate flexibly. These are among the findings of research at the Centre for Telematics and Information Technology of the University of Twente carried out by Marcel van de Burgwal, who obtained his PhD on 15 October.

Soon it will be possible to receive satellite signals not only with a satellite dish, but also using stationary antennae arrays made up of grids of simple, fixed, almost flat antennae that can fit on the roof of a car, for example. The antennae then no longer need to be carefully aimed: the grid of antennae forms a ‘virtual dish’.

That is a great advantage, especially for mobile applications such as satellite TV on the move. The aiming of the virtual dish is actually carried out by the entire grid. It is comparable with the LOFAR project, in which countless simple antennae laid out on the heathland of Drenthe in the north east Netherlands together form a huge dish for radiotelescopy. This too calls for large numbers of calculations and fast communications.

Computing power replaces analogue components

Conventional microprocessors are less suitable for these calculations, because they are highly overdimensioned and use large amounts of energy. The remedy is a combination of smaller, simple processors on a single microchip that can carry out tasks flexibly and be switched off when they are not needed. In this way a complete computer network can be constructed that takes up just a few square millimetres.

To achieve this, Van de Burgwal makes use of an efficient infrastructure based on a miniature network, where a TV or radio receiver is defined by software instead of the classic coils and crystals. “Software-defined radio may seem much more complex, but we can pack so much computing power into the space taken up by, for example, a coil that it more than repays the effort”, says Van de Burgwal.

Chameleon

The same type of microchip also turns out to be suitable for a completely different application: digital radio reception on a smartphone, where the main criterion is minimizing energy use. In his doctoral thesis Van de Burgwal shows that major gains can also be made here by using new methods of communication between the different processors. The multi-processor chip that he uses is based on the Montium processor – appropriately named after a chameleon – that was developed at the University of Twente. The processor is being further developed and marketed by the spinoff business Recore Systems.

Marcel van de Burgwal carried out his research in the Computer Architecture for Embedded Systems group, which forms a part of the Centre for Telematics and Information Technology at the University of Twente. His thesis, or a summary of it, is available in digital form.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/en

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>