Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Virtual satellite dish' thanks to lots of simple processors working together

19.10.2010
Satellite TV without having to set up a receiver dish. Digital radio on your mobile phone without your batteries quickly running flat.

The advanced calculations needed for these future applications are made possible by a microchip with relatively simple processors that can interact and communicate flexibly. These are among the findings of research at the Centre for Telematics and Information Technology of the University of Twente carried out by Marcel van de Burgwal, who obtained his PhD on 15 October.

Soon it will be possible to receive satellite signals not only with a satellite dish, but also using stationary antennae arrays made up of grids of simple, fixed, almost flat antennae that can fit on the roof of a car, for example. The antennae then no longer need to be carefully aimed: the grid of antennae forms a ‘virtual dish’.

That is a great advantage, especially for mobile applications such as satellite TV on the move. The aiming of the virtual dish is actually carried out by the entire grid. It is comparable with the LOFAR project, in which countless simple antennae laid out on the heathland of Drenthe in the north east Netherlands together form a huge dish for radiotelescopy. This too calls for large numbers of calculations and fast communications.

Computing power replaces analogue components

Conventional microprocessors are less suitable for these calculations, because they are highly overdimensioned and use large amounts of energy. The remedy is a combination of smaller, simple processors on a single microchip that can carry out tasks flexibly and be switched off when they are not needed. In this way a complete computer network can be constructed that takes up just a few square millimetres.

To achieve this, Van de Burgwal makes use of an efficient infrastructure based on a miniature network, where a TV or radio receiver is defined by software instead of the classic coils and crystals. “Software-defined radio may seem much more complex, but we can pack so much computing power into the space taken up by, for example, a coil that it more than repays the effort”, says Van de Burgwal.

Chameleon

The same type of microchip also turns out to be suitable for a completely different application: digital radio reception on a smartphone, where the main criterion is minimizing energy use. In his doctoral thesis Van de Burgwal shows that major gains can also be made here by using new methods of communication between the different processors. The multi-processor chip that he uses is based on the Montium processor – appropriately named after a chameleon – that was developed at the University of Twente. The processor is being further developed and marketed by the spinoff business Recore Systems.

Marcel van de Burgwal carried out his research in the Computer Architecture for Embedded Systems group, which forms a part of the Centre for Telematics and Information Technology at the University of Twente. His thesis, or a summary of it, is available in digital form.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/en

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>