Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Petascale' Climate Computer Modeling Heats Up

04.09.2008
NSF Funds Three-Year Research to Study Weather, Global Climate Change Computation

The development of powerful supercomputers capable of analyzing decades of data in the blink of an eye mark a technological milestone capable of bringing comprehensive changes to science, medicine, engineering, and business worldwide.

Researchers at the University of Miami’s Rosenstiel School of Marine and Atmospheric Science, collaborating with NCAR (National Center for Atmospheric Research), COLA (Center for Ocean-Land-Atmospheric Studies) and the University of California at Berkeley are utilizing a $1.4M award from the National Science Foundation (NSF) to generate new “petascale” computer models depicting detailed climate dynamics, and building the foundation for the next generation of complex climate models.

The speed of supercomputing is measured in how many calculations can be performed in a given second. Petascale computers can make 1000000000000000 calculations per second, a staggeringly high rate even when compared to supercomputers. And though true “peta” processing is currently rare, the anticipated availability of petascale computing offers a golden opportunity for climate simulation and prediction scientists to dramatically advance Earth system science and help to improve quality of life on the planet.

For decades researchers assumed that, in some sense, weather and climate were independent. In other words, the large-scale climate determined the environment in which weather events formed, but weather had no impact on climate. However, investigators are finding evidence that weather has a profound impact on climate; a finding that is of paramount importance in the drive to improve weather and climate predictions, as well as climate change projections.

With this boost in computing capabilities, the research team led by Dr. Ben Kirtman, professor of meteorology and physical oceanography at the University of Miami, has developed a novel weather and climate modeling strategy, or “interactive ensembles,” specifically designed to isolate interactions between weather and climate. Their interactive ensembles for weather and climate modeling are now being applied to one of the nation’s premier climate change models, NCAR’s Community Climate System Model (CCSM), the current operational model used by NOAA’s climate forecast system (CFS). The CCSM is also a community model used by hundreds of researchers, and is one of the climate models used in the Nobel Prize-winning International Panel on Climate Change (IPCC) assessments.

The research serves as a sort of ‘pilot program’ to conceptualize and prepare for the implementation of such intense computational systems, which currently remain a scientific and engineering challenge. While not actually having access to petascale capability, these experiments will provide a computational environment where many of the theoretical aspects of the interactive ensembles can be tested. A computational test bed is essential for enabling the scientific development of the interactive ensembles and ensuring efficient use of limited petascale computer resources.

“This marks the first time we will have sufficient computational resources available to begin addressing these pressing scientific challenges in a comprehensive manner. The information we collect from this project will serve as a cornerstone for petascale computing in our field, and help to advance the study of the interactions between weather and climate phenomena on a global scale,” said Kirtman. “ The project will bring together students in computer science and climate science to address problems in an interdisciplinary manner, thus creating a next generation of informed, computational scientists.”

“Through our recently developed Center for Computational Science at the University of Miami we are looking forward to creating an optimal environment where many of the theoretical aspects of the interactive ensembles can tested,“ Kirtman added.

While this research focuses on climate science, the byproducts of this work are applicable to coupled modeling problems in other science and engineering fields, particularly the geosciences, and can inform the long-range design plans of other coupling tools and frameworks.

About the Rosenstiel School
Founded in the 1940's, the University of Miami's Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu

Media Contacts:

Barbra Gonzalez
UM Rosenstiel School of Marine and Atmospheric Science
305.421.4704
barbgo@rsmas.miami.edu
Marie Guma-Diaz
University of Miami
305.284.1601
m.gumadiaz@umiami.edu

Barbra Gonzalez | Rosenstiel School
Further information:
http://www.rsmas.miami.edu
http://www.umiami.edu

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>