Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'FeTRAM' is promising computer memory technology

28.09.2011
Researchers are developing a new type of computer memory that could be faster than the existing commercial memory and use far less power than flash memory devices.

The technology combines silicon nanowires with a "ferroelectric" polymer, a material that switches polarity when electric fields are applied, making possible a new type of ferroelectric transistor.

"It's in a very nascent stage," said doctoral student Saptarshi Das, who is working with Joerg Appenzeller, a professor of electrical and computer engineering and scientific director of nanoelectronics at Purdue's Birck Nanotechnology Center.

The ferroelectric transistor's changing polarity is read as 0 or 1, an operation needed for digital circuits to store information in binary code consisting of sequences of ones and zeroes.

The new technology is called FeTRAM, for ferroelectric transistor random access memory.

"We've developed the theory and done the experiment and also showed how it works in a circuit," he said.

Findings are detailed in a research paper that appeared this month in Nano Letters, published by the American Chemical Society.

The FeTRAM technology has nonvolatile storage, meaning it stays in memory after the computer is turned off. The devices have the potential to use 99 percent less energy than flash memory, a non-volatile computer storage chip and the predominant form of memory in the commercial market.

"However, our present device consumes more power because it is still not properly scaled," Das said. "For future generations of FeTRAM technologies one of the main objectives will be to reduce the power dissipation. They might also be much faster than another form of computer memory called SRAM."

The FeTRAM technology fulfills the three basic functions of computer memory: to write information, read the information and hold it for a long period of time.

"You want to hold memory as long as possible, 10 to 20 years, and you should be able to read and write as many times as possible," Das said. "It should also be low power to keep your laptop from getting too hot. And it needs to scale, meaning you can pack many devices into a very small area. The use of silicon nanowires along with this ferroelectric polymer has been motivated by these requirements."

The new technology also is compatible with industry manufacturing processes for complementary metal oxide semiconductors, or CMOS, used to produce computer chips. It has the potential to replace conventional memory systems.

A patent application has been filed for the concept.

The FeTRAMs are similar to state-of-the-art ferroelectric random access memories, FeRAMs, which are in commercial use but represent a relatively small part of the overall semiconductor market. Both use ferroelectric material to store information in a nonvolatile fashion, but unlike FeRAMS, the new technology allows for nondestructive readout, meaning information can be read without losing it.

This nondestructive readout is possible by storing information using a ferroelectric transistor instead of a capacitor, which is used in conventional FeRAMs.

This work was supported by the Nanotechnology Research Initiative (NRI) through Purdue's Network for Computational Nanotechnology (NCN), which is supported by National Science Foundation.

Writer: Emil Venere, 765-494-4709, venere@purdjue.edu

Sources: Saptarshi Das, sdas@purdue.edu

Joerg Appenzeller, 765 494-1076, appenzeller@purdue.edu

Note to Journalists: An electronic copy of the research paper is available from Emil Venere, 765-494-4709, venere@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdjue.edu

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>