Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Can You See Me Now?' Sign Language Over Cell Phones Comes to United States

25.08.2008
Researchers have developed software that for the first time enables deaf and hard-of-hearing Americans to use sign language over a mobile phone.

A group at the University of Washington has developed software that for the first time enables deaf and hard-of-hearing Americans to use sign language over a mobile phone. UW engineers got the phones working together this spring, and recently received a National Science Foundation grant for a 20-person field project that will begin next year in Seattle.

This is the first time two-way real-time video communication has been demonstrated over cell phones in the United States. Since posting a video of the working prototype on YouTube, deaf people around the country have been writing on a daily basis.

"A lot of people are excited about this," said principal investigator Eve Riskin, a UW professor of electrical engineering.

The video is posted at http://youtube.com/watch?v=FaE1PvJwI8E.
For mobile communication, deaf people now communicate by cell phone using text messages. "But the point is you want to be able to communicate in your native language," Riskin said. "For deaf people that's American Sign Language."

Video is much better than text-messaging because it's faster and it's better at conveying emotion, said Jessica DeWitt, a UW undergraduate in psychology who is deaf and is a collaborator on the MobileASL project. She says a large part of her communication is with facial expressions, which are transmitted over the video phones.

Low data transmission rates on U.S. cellular networks, combined with limited processing power on mobile devices, have so far prevented real-time video transmission with enough frames per second that it could be used to transmit sign language. Communication rates on United States cellular networks allow about one tenth of the data rates common in places such as Europe and Asia (sign language over cell phones is already possible in Sweden and Japan).

Even as faster networks are becoming more common in the United States, there is still a need for phones that would operate on the slower systems.

"The faster networks are not available everywhere," said doctoral student Anna Cavender. "They also cost more. We don't think it's fair for someone who's deaf to have to pay more for his or her cell phone than someone who's hearing."

The team tried different ways to get comprehensible sign language on low-resolution video. They discovered that the most important part of the image to transmit in high resolution is around the face. This is not surprising, since eye-tracking studies have already shown that people spend the most time looking at a person's face while they are signing.

The current version of MobileASL uses a standard video compression tool to stay within the data transmission limit. Future versions will incorporate custom tools to get better quality. The team developed a scheme to transmit the person's face and hands in high resolution, and the background in lower resolution. Now they are working on another feature that identifies when people are moving their hands, to reduce battery consumption and processing power when the person is not signing.

The team is currently using phones imported from Europe, which are the only ones they could find that would be compatible with the software and have a camera and video screen located on the same side of the phone so that people can film themselves while watching the screen.

Mobile video sign language won't be widely available until the service is provided through a commercial cell-phone manufacturer, Riskin said. The team has already been in discussion with a major cellular network provider that has expressed interest in the project.

The MobileASL team includes Richard Ladner, a UW professor of computer science and engineering; Sheila Hemami, a professor of electrical engineering at Cornell University; Jacob Wobbrock, an assistant professor in the UW's Information School; and UW graduate students Neva Cherniavsky, Jaehong Chon and Rahul Vanam.

For more information, contact Riskin at (206) 685-2313 or riskin@u.washington.edu.

More details on the MobileASL project are at http://mobileasl.cs.washington.edu/index.html. A video demonstration is posted at http://youtube.com/watch?v=FaE1PvJwI8E.

Riskin | Newswise Science News
Further information:
http://www.washington.edu

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>