Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Can You See Me Now?' Sign Language Over Cell Phones Comes to United States

25.08.2008
Researchers have developed software that for the first time enables deaf and hard-of-hearing Americans to use sign language over a mobile phone.

A group at the University of Washington has developed software that for the first time enables deaf and hard-of-hearing Americans to use sign language over a mobile phone. UW engineers got the phones working together this spring, and recently received a National Science Foundation grant for a 20-person field project that will begin next year in Seattle.

This is the first time two-way real-time video communication has been demonstrated over cell phones in the United States. Since posting a video of the working prototype on YouTube, deaf people around the country have been writing on a daily basis.

"A lot of people are excited about this," said principal investigator Eve Riskin, a UW professor of electrical engineering.

The video is posted at http://youtube.com/watch?v=FaE1PvJwI8E.
For mobile communication, deaf people now communicate by cell phone using text messages. "But the point is you want to be able to communicate in your native language," Riskin said. "For deaf people that's American Sign Language."

Video is much better than text-messaging because it's faster and it's better at conveying emotion, said Jessica DeWitt, a UW undergraduate in psychology who is deaf and is a collaborator on the MobileASL project. She says a large part of her communication is with facial expressions, which are transmitted over the video phones.

Low data transmission rates on U.S. cellular networks, combined with limited processing power on mobile devices, have so far prevented real-time video transmission with enough frames per second that it could be used to transmit sign language. Communication rates on United States cellular networks allow about one tenth of the data rates common in places such as Europe and Asia (sign language over cell phones is already possible in Sweden and Japan).

Even as faster networks are becoming more common in the United States, there is still a need for phones that would operate on the slower systems.

"The faster networks are not available everywhere," said doctoral student Anna Cavender. "They also cost more. We don't think it's fair for someone who's deaf to have to pay more for his or her cell phone than someone who's hearing."

The team tried different ways to get comprehensible sign language on low-resolution video. They discovered that the most important part of the image to transmit in high resolution is around the face. This is not surprising, since eye-tracking studies have already shown that people spend the most time looking at a person's face while they are signing.

The current version of MobileASL uses a standard video compression tool to stay within the data transmission limit. Future versions will incorporate custom tools to get better quality. The team developed a scheme to transmit the person's face and hands in high resolution, and the background in lower resolution. Now they are working on another feature that identifies when people are moving their hands, to reduce battery consumption and processing power when the person is not signing.

The team is currently using phones imported from Europe, which are the only ones they could find that would be compatible with the software and have a camera and video screen located on the same side of the phone so that people can film themselves while watching the screen.

Mobile video sign language won't be widely available until the service is provided through a commercial cell-phone manufacturer, Riskin said. The team has already been in discussion with a major cellular network provider that has expressed interest in the project.

The MobileASL team includes Richard Ladner, a UW professor of computer science and engineering; Sheila Hemami, a professor of electrical engineering at Cornell University; Jacob Wobbrock, an assistant professor in the UW's Information School; and UW graduate students Neva Cherniavsky, Jaehong Chon and Rahul Vanam.

For more information, contact Riskin at (206) 685-2313 or riskin@u.washington.edu.

More details on the MobileASL project are at http://mobileasl.cs.washington.edu/index.html. A video demonstration is posted at http://youtube.com/watch?v=FaE1PvJwI8E.

Riskin | Newswise Science News
Further information:
http://www.washington.edu

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>