Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016

This year's topic of the PCIM Conference in May, in Nuremberg, is the future of power electronics. Prof. Manfred W. Gekeler will present his research results regarding efficiency and electro-magnetic compatibility at the international leading trade fair and conference for power electronics, intelligent drive technology, renewable energies and energy management.

Inverters are used to convert DC voltage into AC voltage and are deployed in three-phase drives, for feeding power of renewable sources (solar or wind) into the mains supply, for uninterruptible power supply or as an active dynamic filter. Lately, the uses of highly promising 3-level pulse inverters have become increasingly popular. Today's conventional design inverters are of the hard-switching type. However, this type produces switching losses, which result in reduced efficiency.


Schematic diagram of the S3L inverter.

TLB GmbH

At the Konstanz University of Applied Sciences Prof. Dr.-Ing. Manfred W. Gekeler developed the S3L inverter, which steers clear of the disadvantages of the conventional hard-switching inverter. With this inverter, Prof. Gekeler has solved the problem of loss of energy in a simple way, namely by adding a snubber circuit. Thanks to its functional principle, this circuit avoids switching losses and significantly increases efficiency. It consists of merely a few simple, passive components and connects the topology of the multi-level inverter with the soft-switching technology.

The "Soft-Switching Three Level (S3L) Inverter" distinguishes itself through its particularly high efficiency and favorable EMC behavior, even when used with standard Si power semiconductors (IGBT, IGCT, GTO). Now Prof. Gekeler has additionally developed a new variant of the switching, the SS3L inverter topology.
The S3L inverter is a pulse-width modulated inverter that operates at switching frequencies of over 30 kHz and output frequencies to approx. 500 Hz. The total harmonic distortion was tested for inverters in the photovoltaic sector and meets the strict regulations in this field. The S3L inverter can be operated at any load angle, from 0 up to 360 degrees (as pulse inverter or pulse rectifier). Another interesting feature of the S3L inverter is the option to limit the rate of rise of output voltages du/dt and currents di/dt. External du/dt filters are then no longer required and are quasi "integrated".
Advantages of S3L inverters include low losses and high switching frequencies. Their efficiency is excellent, even at high switching frequencies. They thus enable inexpensive "cooling", e.g. in smaller, lightweight cooling elements, fans and chokes. S3L inverters are smaller and more compact than other inverter solutions. Thanks to the high switching frequencies used, no annoying whistling noises occur.

... more about:
»EMC »S3L »TLB »frequencies »topology »voltage

S3L inverters are "robust". There is no "dead time" required in the control signals. In addition, short faulty pulses in the control signals of IGBTs would not lead to a switch-off, but operation would simply continue. Moreover, there are only few inductive voltage peaks, which ensure high reliability.

S3L inverters stand out due to their high electro-magnetic compatibility. As they cause less harmonic current in motor current, there are less motor power losses and utilization of the motor is higher. Due to the du/dt limit of the output voltages, capacitive compensation currents via ball bearings and motor problems are avoided.
S3L is also suitable for the use in inverter circuits with SiC and GaN transistors. In this case, it is not about reducing the losses but limiting du/dt and voltage peaks – which are caused by parasitic inductivities and high du/dt (particularly important for motor control units).

Professor Manfred W. Gekeler will present his inverters and test results at the PCIM Conference. The scientist, who teaches and does research at the Konstanz University of Applied Sciences, will present the results of his EMC and efficiency comparison measurements at the leading trade fair for power electronics and intelligent drive technology. The PCIM conference will take place in Nuremberg from May 10-12, 2016. Prof. Gekeler will be holding a presentation on the "Comparison of the EMC and Efficiency Characteristics of Hard and Soft Switching Three-Level Inverters" on Tuesday, May 10, 2016.

The Konstanz University of Applied Sciences has entrusted Technologie-Lizenz-Büro (TLB) GmbH with the marketing of its innovation and the global economic implementation of this cutting-edge technology. So far experts have shown strong interest in the invention.

Licensing of this new technology is once again available for photovoltaics, motor control, uninterruptible power supply and wind power. Patent applications for the invention have already been granted in major industrialized nations (DE, JP, KR, CN, USA, CA, EP).
For further information - including on licensing - please contact the TLB Innovation Manager Dipl.-Ing. Emmerich Somlo (somlo@tlb.de).

Weitere Informationen:

http://www.tlb.en
http://www.htwg-konstanz.de/Leistungselektronik.4549.0.html

Annette Siller | idw - Informationsdienst Wissenschaft

Further reports about: EMC S3L TLB frequencies topology voltage

More articles from Event News:

nachricht Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting
13.02.2017 | Kuratorium für die Tagungen der Nobelpreisträger in Lindau e.V.

nachricht Complex Loading versus Hidden Reserves
10.02.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>