Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Siemens at the 2014 UIC ERTMS World Conference in Istanbul


According to the "The Rail Journey 2020" study, long-distance European rail traffic will increase by about 20 percent by 2020, and passenger numbers will exceed 1.36 billion.

Ensuring that this amount of mobility will be available in future is one of the major challenges of our times. An efficient long-distance railway infrastructure forms the basis for environmentally compatible mobility without borders, as well as for the further economic development of regions and countries.

Against this background, Siemens will demonstrate how safe, interoperable European rail traffic "without borders" can actually be achieved in Gallery 2, B3 at the 11th UIC (Union internationale des chemins de fer) ERTMS World Conference in Istanbul, which is to be held on April 1–4, 2014.

ETCS increases line capacity and ensures continuous rail traffic throughout Europe.

... more about:
»Conference »ETCS »Istanbul »Monitoring »UIC »activities »capacity

Train protection systems ensure safe rail transportation of passengers and goods. There are currently 14 different train protection systems in use in Europe, which are mutually incompatible. The European Union Directive issued in 1996 to resolve this compatibility problem obligated European train and network operators to equip their trains and lines with the European Train Control System (ETCS). ETCS is a modular system with standardized functions and interfaces that are available in a number of application levels. With ETCS Level 1, the signal aspects are transmitted to the vehicles with the aid of beacons called eurobalises. Level 2, however, uses the mobile radio standard GSM-R to transmit this information from a route control center to the vehicle. With this technology, information is continuously exchanged, independently of fixed signals. This facilitates short intervals between trains and considerably increases the route capacity and safety at speeds up to 350 km/h. At the World Conference, an ETCS emulator "ETCS live" will demonstrate the results of optimized acceleration, driving and braking operations in respect of punctuality and energy efficiency. Visitors will be able see an ATO (Automatic Train Operation) system: The demonstration is based on genuine track data, and every action of a real train driver has to be duplicated to move the train along the realistic track. The ATO beats the energy consumption achieved by even experienced train drivers by five to ten percent. This means that ETCS in combination with this component can use small reserves in the timetables to reap substantial energy savings. The Automation Train Operation system takes over the driving the train on the route and stops it with precision at the platforms. With the aid of the stored route profile, the system calculates how strongly the train has to accelerate and to brake before curves in order to arrive punctually at the next station – and, in doing so, consume as little energy as possible.

The Driver Advisory System optimizes train control and reduces energy consumption

In response to increasing energy and operating costs and in order to reduce CO2 emissions, more and more railway operators are finding it necessary to demand energy-saving, low-wear driving skills from their drivers. As train drivers are often deployed flexibly, they are not always capable of finding the ideal speed profile on every route. The DAS (Driver Advisory System) can now give them suggestions for improving train control. The combination of route data, such as maximum permissible speeds and distance between stations, as well as timetable information enable an optimized speed profile to be calculated and is then recommended to the train driver visually in real-time. The aim is to have drivers follow the optimum speed profile on every route in order to save energy and reduce wear. Whereas DAS still allows the train driver to control the train himself, the ATO system takes over optimized driving of the train until the train stops at the next platform.

Predictive maintenance by means of Condition Monitoring

Rail transportation systems have to run smoothly without interrupting the flows of passengers and goods. Competent and innovative servicing is required to meet the ever increasing availability demands of these systems. In this connection, Siemens uses "Condition Monitoring" to plan maintenance activities efficiently and minimize disruptions to operations. The system data is collected by long-distance transmission and flows directly into everyday maintenance activities. This enables impending damage to be detected at an early stage. Diagnostic data describes the current condition of the systems, assesses trends and provides a catalog of measures to rectify defects.

Dear Sir or Madam, We look forward to welcoming you to our fair booth at B3 in Gallery 2 between April 1 and 4, 2014. In advance of the conference, we will be pleased to arrange discussions with experts on the subjects that interest you and who will be able to show you the innovative ETCS solutions at our booth.

You can reach us by telephone or e-mail:

Ms. Silke Reh

Mobile: +49 174 1551579

We look forward to meeting you!

Silke Reh | Siemens Mobility and Logistics
Further information:

Further reports about: Conference ETCS Istanbul Monitoring UIC activities capacity

More articles from Event News:

nachricht #IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017
14.10.2016 | GESIS - Leibniz-Institut für Sozialwissenschaften

nachricht Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus
14.10.2016 | Leibniz-Institut für Agrarentwicklung in Transformationsökonomien (IAMO)

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>