Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens at the 2014 UIC ERTMS World Conference in Istanbul

01.04.2014

According to the "The Rail Journey 2020" study, long-distance European rail traffic will increase by about 20 percent by 2020, and passenger numbers will exceed 1.36 billion.

Ensuring that this amount of mobility will be available in future is one of the major challenges of our times. An efficient long-distance railway infrastructure forms the basis for environmentally compatible mobility without borders, as well as for the further economic development of regions and countries.

Against this background, Siemens will demonstrate how safe, interoperable European rail traffic "without borders" can actually be achieved in Gallery 2, B3 at the 11th UIC (Union internationale des chemins de fer) ERTMS World Conference in Istanbul, which is to be held on April 1–4, 2014.

ETCS increases line capacity and ensures continuous rail traffic throughout Europe.

... more about:
»Conference »ETCS »Istanbul »Monitoring »UIC »activities »capacity

Train protection systems ensure safe rail transportation of passengers and goods. There are currently 14 different train protection systems in use in Europe, which are mutually incompatible. The European Union Directive issued in 1996 to resolve this compatibility problem obligated European train and network operators to equip their trains and lines with the European Train Control System (ETCS). ETCS is a modular system with standardized functions and interfaces that are available in a number of application levels. With ETCS Level 1, the signal aspects are transmitted to the vehicles with the aid of beacons called eurobalises. Level 2, however, uses the mobile radio standard GSM-R to transmit this information from a route control center to the vehicle. With this technology, information is continuously exchanged, independently of fixed signals. This facilitates short intervals between trains and considerably increases the route capacity and safety at speeds up to 350 km/h. At the World Conference, an ETCS emulator "ETCS live" will demonstrate the results of optimized acceleration, driving and braking operations in respect of punctuality and energy efficiency. Visitors will be able see an ATO (Automatic Train Operation) system: The demonstration is based on genuine track data, and every action of a real train driver has to be duplicated to move the train along the realistic track. The ATO beats the energy consumption achieved by even experienced train drivers by five to ten percent. This means that ETCS in combination with this component can use small reserves in the timetables to reap substantial energy savings. The Automation Train Operation system takes over the driving the train on the route and stops it with precision at the platforms. With the aid of the stored route profile, the system calculates how strongly the train has to accelerate and to brake before curves in order to arrive punctually at the next station – and, in doing so, consume as little energy as possible.

The Driver Advisory System optimizes train control and reduces energy consumption

In response to increasing energy and operating costs and in order to reduce CO2 emissions, more and more railway operators are finding it necessary to demand energy-saving, low-wear driving skills from their drivers. As train drivers are often deployed flexibly, they are not always capable of finding the ideal speed profile on every route. The DAS (Driver Advisory System) can now give them suggestions for improving train control. The combination of route data, such as maximum permissible speeds and distance between stations, as well as timetable information enable an optimized speed profile to be calculated and is then recommended to the train driver visually in real-time. The aim is to have drivers follow the optimum speed profile on every route in order to save energy and reduce wear. Whereas DAS still allows the train driver to control the train himself, the ATO system takes over optimized driving of the train until the train stops at the next platform.

Predictive maintenance by means of Condition Monitoring

Rail transportation systems have to run smoothly without interrupting the flows of passengers and goods. Competent and innovative servicing is required to meet the ever increasing availability demands of these systems. In this connection, Siemens uses "Condition Monitoring" to plan maintenance activities efficiently and minimize disruptions to operations. The system data is collected by long-distance transmission and flows directly into everyday maintenance activities. This enables impending damage to be detected at an early stage. Diagnostic data describes the current condition of the systems, assesses trends and provides a catalog of measures to rectify defects.

Dear Sir or Madam, We look forward to welcoming you to our fair booth at B3 in Gallery 2 between April 1 and 4, 2014. In advance of the conference, we will be pleased to arrange discussions with experts on the subjects that interest you and who will be able to show you the innovative ETCS solutions at our booth.

You can reach us by telephone or e-mail:

Ms. Silke Reh

Mobile: +49 174 1551579

silke.reh@siemens.com

We look forward to meeting you!

Silke Reh | Siemens Mobility and Logistics
Further information:
http://www.siemens.com

Further reports about: Conference ETCS Istanbul Monitoring UIC activities capacity

More articles from Event News:

nachricht International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open
20.03.2017 | Leibniz-Institut für ökologische Raumentwicklung e. V.

nachricht CONNECT 2017: International congress on connective tissue
14.03.2017 | Universität Ulm

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>