Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Delft takes flight with three-gram 'dragonfly'

22.07.2008
On Wednesday 23 July, TU Delft will be presenting the minute DelFly Micro air vehicle.

This successor to the DelFly I and II weighs barely 3 grams, and with its flapping wings is very similar to a dragonfly. Ultra-small, remote-controlled micro aircraft with cameras, such as this DelFly, may well be used in the future for observation flights in difficult-to-reach or dangerous areas. The DelFly Micro will make a short demonstration flight during the presentation.

The DelFly Micro is a 'Micro Air Vehicle' (MAV), an exceptionally small remote-controlled aircraft with camera and image recognition software. The Micro, weighing just 3 grams and measuring 10 cm (wingtip to wingtip) is the considerably smaller successor to the successful DelFly I (2005) and DelFly II (2006). The DelFly Micro, with its minuscule battery weighing just 1 gram, can fly for approximately three minutes and has a maximum speed of 5 m/s.

Ultra-small remote-controlled, camera-equipped aircraft are potentially of great interest because they could eventually be used for observation flights in difficult-to-reach or dangerous areas.

Nature

The basic principle of the DelFly is derived from nature. The 'dragonfly' has a tiny camera (about 0.5 grams) on board that transmits its signals to a ground station. With software developed by TU Delft itself, objects can then be recognised independently. The camera transmits TV quality images, and therefore allows the DelFly II to be operated from the computer. It can be manoeuvred using a joystick as if the operator was actually in the cockpit of the aircraft. The aim is to be able to do this with the DelFly Micro too.

Miniaturisation

The development of the DelFly is above all the story of continuing miniaturisation of all the parts, from the DelFly I (23 grams and 50 cm) via the DelFly II (16 grams and 30 cm) to the present DelFly Micro (3 grams and 10 cm).

The DelFly II drew huge attention in 2006 because it could fly horizontally (21 km/hr) as well as hover, just like a hummingbird, and also fly backwards. The DelFly Micro, incidentally, cannot do this just yet.

In a few years time, the new objective of the project, the DelFly NaNo (5 cm, 1 gram) will have been developed. The Micro is an important intermediate step in this development process. A second objective for the future is for the DelFly to be able to fly entirely independently thanks to image recognition software.

Presentation

The press presentation of the DelFly Micro will be on Wednesday 23 July, from 1 pm to 2 pm in Hall A of the Sports and Cultural Centre, Mekelweg 8-10, 2628 CD Delft.

During the presentation, the DelFly Micro will make a short demonstration flight (indoors). In addition, a recent film of a flight will also be made available. This is due to the fact that it is difficult to film in this location because of the speed of the DelFly in combination with its manoeuvrability.

More information

For more information and to register for the presentation, please contact Charlotte de Kort, Marketing & Communication, Faculty of Aerospace Engineering, c.g.w.dekort@tudelft.nl , +31 6 14015135.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl
http://www.delfly.nl

More articles from Event News:

nachricht ICTM Conference 2017: Production technology for turbomachine manufacturing of the future
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Innovation Day Laser Technology – Laser Additive Manufacturing
01.11.2016 | Laser Zentrum Hannover e.V.

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>