Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science of the Sichuan earthquake

30.05.2008
Greater Fort Lauderdale - Broward County Convention Center Fort Lauderdale, Florida 27-30 May 2008
The first detailed portrait of the ground motions generated by the earthquake that devastated China's Sichuan province on May 12 will be presented today in a press conference and a scientific session at the AGU 2008 Joint Assembly.

Seismic waves calculated by a computer model, and verified by ground-motion velocities measured during the earthquake at Chinese seismological stations, indicate that the ground suddenly jumped, shifted, or sank by at least one and a half meters (5 feet) in a matter of seconds, finds Mario Chavez, Professor of Seismological Engineering at the National Autonomous University of Mexico in Mexico City.

By indicating how much and in which direction the ground moved locally at millions of one-kilometer-square areas throughout a vast region including the earthquake's epicenter, Chavez's preliminary results could help the Chinese target aid to the hardest hit of those areas not yet reached by emergency crews. The data may also help pinpoint which of hundreds of dams in the stricken region are the most at risk, he adds.

"Even though the findings are preliminary, they can be used. It's better to have this information than no information," Chavez says The ground-motion data offer "an explanation of why we observed so much damage in the region," Chavez adds. Displacements of at least 1.5 meters (5 feet) would have shattered rock and could readily explain, for instance, the landslide that formed a fragile dam across the Jianhe River and forced the evacuation of approximately 160,000 people.

Chavez's study also indicates that the ground motions caused by the 7.9 magnitude quake took place at velocities of at least 65 centimeters (2.1 feet) per second. In size and speed, the motions are similar to those that were recorded at the epicenter of an 8.1 magnitude earthquake that killed 30,000 people in Mexico City in 1985, Chavez says. When tested against the ground motions from that quake, an earlier version of the computer model proved highly accurate, he notes.

To verify the calculations this time, he required seismographic measurements from the Chinese quake. His 23-year-old son Erik, who is a student in China and speaks the language, helped him obtain those measurements from Chinese scientists just last week. Chavez says he'll make his new ground-motion findings, which he completed Tuesday, available to Chinese colleagues as soon as he can.

Chavez will discuss the Sichuan earthquake at a press conference today (May 30, 2008) at 11:30 am Eastern Daylight Time at the meeting. Reporters are invited to attend this event in the Press Conference Room (Room 301, Level 3, Conference Center), or to follow the instructions below to call in to the press conference and view the speakers' slides on the Web.

Chavez will also give a presentation today on the Sichuan earthquake findings in a scientific session on "Observation, Modeling, and Economics of Extreme Events" (Session U53A), which begins at 1:30 pm.

Call-in instructions:

* From USA and Canada, call (toll free): +1 888 481 3032
* From other locations, call: +1 617 801 9600

When prompted, please enter this access code: 115139
Viewing speaker slides on the Web::

To view slides shown at Chavez's press conference as they are presented, please go to this website:
http://www.visualwebcaster.com/event.asp?id=48707

Then, type in your name, employer, and email address, and click "Register".
At the new web page that appears, click on the "Slides Only" button. When another web page then opens (the 'player' window), please click on its "Ask A Question" button, type in your name again, and click "Submit". Slides shall be displayed one at a time in a portion of the player window.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Event News:

nachricht “Lasers in Composites Symposium” in Aachen – from Science to Application
19.09.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht I-ESA 2018 – Call for Papers
12.09.2017 | Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>