Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF Conference probes water's mysterious interactions at molecular level

14.04.2008
Some of the most challenging problems in science concern the behaviour of the most commonplace compound on the planet's surface - water. But some of the mysteries are now being unravelled by the latest analysis and imaging techniques in an unfolding story that was presented at a recent conference organised by the European Science Foundation (ESF) focusing on interaction between water and other compounds at the molecular level.

Some of the greatest puzzles involve the interaction between molecules of water and other compounds as they come into proximity. These problems are not purely academic, because they have vital implications for understanding many important processes and biochemical reactions within organisms, some of them implicated in human disease. The molecular properties of water also have great importance for materials science, nanotechnology, and the semiconductor industry.

The underlying problem is that at the molecular level the behaviour of water and particularly interactions with other substances is extremely complex, and correspondingly difficult to explain in a few words. Before some of the exotic effects can be exploited, they must be thoroughly understood, and this in turn depends upon being able to observe the processes in some way. A major focus of the ESF conference was on new techniques for revealing information about the behaviour of water at the molecular scale in different circumstances, according to the conference's chair Marie-Clare Bellissent-Funel. "Various techniques were used to reveal information of water at solid, soft, vapour, protein, membrane, and other interfaces," she said.

High resolution x-ray diffraction is an important technique for analysing water molecules at interfaces, observing the way high-energy x-ray beams are scattered at the points of interaction. The location and orientation of individual water molecules can be detected that way, and already a lot has been learned about the crucial role played by them in critical biochemical reactions, including those involving docking or interactions between proteins. Water molecules also play a crucial role in ushering key components of biology such as metal ions into cells through permeable membranes, and details of further progress understanding the processes involved were presented at the conference. "The understanding of such events could find application in development of medication and design of nanofluidic devices," said Bellissent-Funel.

Such events can only be properly understood by analysing not just the static structure at a point in time, but the dynamic changes over time, and emerging techniques for this were also discussed at the ESF conference, as Bellissent-Funel pointed out. This is difficult to do at present purely by observation, but progress has been made by combining experiments with computer based simulations.

Such simulations incorporate a description of the unusual geometry of the water molecule, which is the source of all the strange and important properties of water. The molecule comprises an oxygen atom with two hydrogen atoms hanging off like Mickey Mouse ears. This gives the molecule an uneven distribution of electric charge, enabling it readily to form weak but significant hydrogen bonds with molecules of both water and other compounds.

Computer models are also being used to simulate behaviour of solutions, in which hydrogen bonds between molecules of water and the solute (substance being dissolved) prevent the latter conglomerating and therefore precipitating out. This is a function of water's "interaction potential", which means the ability or tendency of water molecules to form hydrogen bonds with other molecules. The ability to simulate the behaviour of interactions between water and solute molecules, rather than just between water molecules, represents an important development, said Bellissent-Funel.

The overall complexity of water interface physics was reflected at the ESF conference by the breadth and depth of the presentations, and also by the fact that key speakers were drawn from all over the world, including the US and Japan. But Bellissent-Funel emphasised that Europe had growing strengths and has been successful in recruiting new talent into this dynamic, challenging, and hugely promising field, even attracting some from outside the continent. "It was clear from the short contributions and posters that there is an impressive set of young researchers in this general area, and also that some of them come originally from outside Europe," said Bellissent-Funel. A key point is that these researchers by necessity span a range of disciplines across the whole scientific spectrum, reflecting the fundamental importance of water science.

Thomas Lau | alfa
Further information:
http://www.esf.org/conferences/07225
http://www.esf.org/fileadmin/be_user/activities/research_conferences/Docs_NEW/2007/2007-225%20FP.pdf

More articles from Event News:

nachricht 2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)
15.02.2018 | Deutsche Gesellschaft für Materialkunde e.V.

nachricht Aachen DC Grid Summit 2018
13.02.2018 | Forschungscampus Flexible Elektrische Netze

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>