Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From "Light-Harvesting Processes" to "Clean Solar Fuel"

11.02.2009
The University of Bayreuth and the University of Glasgow organize from March 10 - 14, 2009 an international and interdisciplinary conference "Light-Harvesting Processes LHP09" in the Educational Centre "Kloster Banz" (a Bavarian historic monastery close to Bamberg).

Prof. Dr. Richard Cogdell and Prof. Dr. Jürgen Köhler will discuss with more then 100 scientists from 18 nations the latest results of the main topic of the conference: Harvesting solar energy by natural and artificial photosystems.

The total annual global energy consumption is set at least to double from its current level by 2050. However, fossil fuel will start to run out by that time and in any case this would produce unacceptable amounts of CO2 enhancing global warming. From the fact that the amount of solar energy that hits the Earth every hour corresponds to the world's annual energy consumption, it becomes clear that solar driven energy production represents a sustainable long-term solution for that problem. Hence, harnessing solar energy for energy supply becomes a major challenge for the future.

At present the only conversion technology that might offer long-term, large-scale use is photovoltaics, i.e. a technology based on inorganic solar cells manufactured in a classical top-down approach. Its natural counterpart however, photosynthesis, is based on exactly the opposite strategy - bottom-up, i.e. starting from individual molecules and combining them to supramolecular structures by self-assembly. The success of this strategy is testified by the high flexibility and robustness of this process covering a variety of scales such as size (bacteria and trees), temperature (thermal springs and Siberian tundra), and environmental conditions (variations in pH). Moreover, nature has been able to solve successfully problems like adaptation to light conditions, self-reproduction, and self-repair.

In recent years, progress in structural biology has provided detailed insights into the structure-function relationships of the molecular machinery of photosynthesis. However, in order to learn from biology how to construct systems for artificial photosynthesis a better understanding of fundamental processes like exciton transfer, charge separation, or cyclic electron flow is crucial. This asks for collaborations between biologists, biochemists, physicists, crystallographers, and others to do the research. Moreover training of students to develop the expertise at the interface of such different disciplines to carry this long term but essential research forward is one of the most important tasks for the future.

The conference "Light-Harvesting Processes LHP09" is financially supported by the Volkswagen Foundation.

The process of light harvesting by antenna pigments lies at the heart of solar energy conversion. Aim of the conference is to bring together scientists from diverse fields to stimulate co-operations and to discuss options for the technological development of practical methods for the utilization of photosynthesis. The realization of the seriousness and rapidity of climate change accentuates the importance of this research for future energy supply.
More details and the Preliminary Scientific Program as PDF
http://lhp-bayreuth.de

Jürgen Abel | idw
Further information:
http://lhp-bayreuth.de
http://www.uni-bayreuth.de/

More articles from Event News:

nachricht See, understand and experience the work of the future
11.12.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Innovative strategies to tackle parasitic worms
08.12.2017 | Swiss Tropical and Public Health Institute

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

How fires are changing the tundra’s face

12.12.2017 | Ecology, The Environment and Conservation

Telescopes team up to study giant galaxy

12.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>