Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project to present first standardised, traceable approach to measuring Energy Harvesting at PTB

24.07.2013
"Energy Harvesting: A metrological approach" to take place at Physikalisch-Technische Bundesanstalt (PTB), Braunschweig from 28th-29th August 2013. This free one-off event is aimed at anyone interested in the technological and commercial advancement of energy harvesting technologies.

Europe’s energy harvesting community will descend on Braunschweig next month to hear the results of a three year multi-national research project to apply academically backed standardisation and metrology principles to the technology for the first time to support its commercial application and development.

Delegates will receive in-depth briefings on a range of new tools and best practice for the measurement of energy harvesting performance including techniques focused on specific technologies such as piezoelectric, thermoelectric, electrostatic and magnetostrictive energy harvesting.

Energy harvesting’s time has come. Tiny devices that scavenge wasted energy could boost European industry, improve its green credentials and create a multibillion pound market themselves. Many industries including construction, transport, automotive, mobile communication, and sensors and instrumentation are already investigating the potential of EH devices. However the industry urgently requires agreement on measurement standards in order to provide certainty to the market on what they can deliver and prevent unfounded claims harming confidence in the technology.

The Metrology for Energy Harvesting project brings together Europe’s seven leading measurement institutes, who for the last three years have developed the measurement tools and methods to support European industry in the advancement and application of energy harvesting technologies.

As well as hearing from the project leaders, attendees will delegates will have the opportunity to input into the future metrological requirements in this area and the best ways of ensuring energy harvesting’s commercial success. There is also the choice of attending one of two workshops run by world leading experts that provide more in-depth insights into either electro-mechanical (including piezoelectric) or thermoelectric technologies and their application.

Dr Ernst Lenz, PTB said: “The lack of accurate and standardised measurement in energy harvesting is hindering the development, innovation and market acceptance of these devices as well as efforts to improve efficient use of waste energy in industry and commercial products. Over the past three years the Metrology for Energy Harvesting project has pooled Europe’s academic measurement and material science expertise, and with input from industry backers looked to address this issue through thoroughly researched rigorous and traceable measurement techniques. We strongly believe that the work we will present at the end of August will in time enable industry and consumers to directly compare different EH technologies such as thermoelectric and vibrational harvesting devices. This increased market confidence will increase and industrial investment and further down the line lower costs, increase energy efficiency, and improve sustainability.”

For more information contact the event organisers - energy-harvesting@npl.co.uk

Notes to editors

1. The Metrology for Energy Harvesting Project brings together Europe's world-leading expertise in measurement, energy harvesting and systems engineering. Partners include many of Europe's national measurement institutes. It aims to address challenges involved in developing traceable measurements and standards (particularly vibrational and thermal EH) to provide Europe with the metrological framework, technical capability and scientific knowledge to enable the development of effective, commercially successful EH technologies.

2.Agenda:

Wed 28th August (evening): reception for delegates – drinks & buffet

Thurs 29th August
10:00 - 12:30 Industry Meeting
12:30 – 14:00 Lunch & poster session
14:00 - 17:00 Parallel sessions for workshops:
o Workshop 1 Electro-mechanical Energy Harvesting
o Workshop 2 Thermoelectric Energy Harvesting

Imke Frischmuth | idw
Further information:
http://projects.npl.co.uk/energy_harvesting/

More articles from Event News:

nachricht Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting
13.02.2017 | Kuratorium für die Tagungen der Nobelpreisträger in Lindau e.V.

nachricht Complex Loading versus Hidden Reserves
10.02.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>