Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocarbons clean water without the use of chemicals and transform waste heat into electricity

15.10.2015

Scientists in Saarbrücken are working on a desalination method which does not require the addition of chemicals and which is highly energy-efficient: in the process known as capacitive de-ionization (CDI), electrodes are used to extract the ions from the water and collect them on the electrodes. The result is clean water and ions which have been enriched on the electrodes. This environmentally friendly process can even be used to generate electricity: emissions such as carbon dioxide are also suited to generating electrical energy when they are dissolved in water as ions.

When purifying waste water, chemical reactions are used or it is subjected to elaborate filtering methods to remove salts and heavy metals. Now scientists in Saarbrücken are working on a desalination method which does not require the addition of chemicals and which is highly energy-efficient: in the process known as capacitive de-ionization (CDI), electrodes are used to extract the ions from the water and collect them on the electrodes.


Nanoporous carbon materials for electrochemical water treatment via capacitive deionization.

Copyright: Uwe Bellhäuser/Volker Preser (INM)

The result is clean water and ions which have been enriched on the electrodes. This environmentally friendly process can even be used to generate electricity: emissions such as carbon dioxide are also suited to generating electrical energy when they are dissolved in water as ions.

At an international conference in Saarbrücken, more than 110 experts from 20 countries will be exchanging their knowledge from 26th to 28th October in order to further understand and improve the materials and processes which form the basis of CDI. The conference is being organized on the Saarbrücken Campus by the INM – Leibniz Institute for New Materials.

The principle of CDI not only serves the purpose of removing unwanted ions from the water. Volker Presser, head of the Energy Materials Group at INM explains, “The generation of electricity can also be the main desired effect, to use emissions from power plants to produce electricity, for example”. For this purpose, the emissions merely has to be present in the water as ions.

“Carbon dioxide, for example, is very well suited to this purpose” Professor Presser said and added: “It is particularly exciting for us that, thanks to the electrosorption process, we can even convert waste heat into electricity”. He said this worked because the electrodes are charged at low temperatures and discharged at higher temperatures. As a result of the temperature increase, the electrical voltage increases so that electrical energy can be recovered directly during discharging.

The basic principle of CDI functions without chemical reactions thanks to ion-electrosorption: the water to be purified flows between two electrodes made of porous carbon to which a voltage is applied. The positively charged electrode extracts the ions which have a negative charge from the water and the negatively charged electrode, located opposite, extracts the ions with a positive charge from the water. The ions are stored in the nanopores of the electrode material and, at the end of the process, clean water flows out.

“To achieve the highest possible degree of efficiency, it is not sufficient to simply use ‘any’ porous activated carbon as electrode material”, Presser, the young Saarbrücken-based researcher commented. One focus of his work and an important topic of discussion at the conference is therefore the synthesis and characterisation of new carbon-nanomaterials such as graphenes or so-called carbon nano-onions.

Die CDI&E International Conference on Capacitive Deionization and Electrosorption will take place from 26th to 28th October in the auditorium of the campus of the Saarland University. The conference is chaired by the German-Israeli team consisting of Professor Volker Presser and Professor Matthew Suss from Technion – the Israel Institute of Technology.

A large number of participants come from Asian and Arab regions since countries where there is a marked scarcity of water are doing intensive research into the technology. CDI is also an attractive option for processing water from mine workings: not only do you get clean water; the ions or precious metals retained as a highly enriched fluid can be a valuable resource in industry.

In ten programme units with supplementary posters, scientists will discuss their results and findings regarding possible materials and mechanisms of electrodes in CDI, energy generation, extraction of ions and ionic processes. Professor emeritus Bertel Kastening, a well-known pioneer of electro-chemistry, has been invited as guest of honour.

The conference will be held in English.

For further information, please refer to: www.cdi2015.de

As a member of the press, you are cordially invited.

Your expert and responsible for the content:
Prof. Volker Presser
INM – Leibniz-Institute for New Materials
Head of Energy Materials
Phone: +49 681-9300-177
volker.presser(at)leibniz-inm.de

Organisation at the venue:
Christine Hartmann
INM – Leibniz Institute for New Materials
Conference Organization
Phone: +49 681-9300-244
christine.hartmann(at)leibniz-inm.de
cdi@leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, Germany, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en
http://cdi2015.inm-gmbh.de/

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: CDI EMISSIONS Leibniz-Institut clean water electricity electrodes ions materials use of chemicals

More articles from Event News:

nachricht Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting
13.02.2017 | Kuratorium für die Tagungen der Nobelpreisträger in Lindau e.V.

nachricht Complex Loading versus Hidden Reserves
10.02.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>