Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Ultrasound Therapy, Computer Diagnosis, and Customized Medication

28.08.2013
Renowned Experts Discuss the Future of Medicine in Bremen

Which technological advancements can we expect to see in the field of medical technology? How well can diagnosis and therapy be customized for each patient? And how much automation can medicine handle?

To help answer these fundamental questions, the Fraunhofer MEVIS Institute for Medical Image Computing will hold a symposium entitled “Disruptive Innovations in Medicine” on September 4, 2013 at Jacobs University in Bremen. The occasion for the symposium is the farewell of Prof. Heinz-Otto Peitgen, founder and long-time institute director of Fraunhofer MEVIS.

Medical science is at a point of transition. Established diagnostic methods such as ultrasound, X-ray, and MRI are continually being improved. These methods can now deliver extremely detailed imagery and information. In addition, new methods are constantly being developed, including the combination of MRI and PET scans for cancer diagnosis. At the same time, the spectrum of therapy options is always growing: new medications for specific patient groups are now being marketed. Operating room methods are becoming more refined, and the number of minimally invasive intervention options is ever expanding.

However, these advancements carry enormous demands and these new options increase complexity. Next-generation CT and MRI deliver images with data size many times those made by older devices. In addition, a current trend is to combine the images and information from many different methods to obtain more reliable diagnoses. This results in a true flood of various image data. “These data gluts reach the limits of what even specialized clinicians can absorb in their daily routine,” says MEVIS institute director Horst Hahn. “Often, they are barely able to incorporate all available information into their therapy decisions.”

In the future, computers could offer useful support. Researchers have already developed programs to employ patterns to search lung and breast x-rays, helping doctors during early detection of cancer. Preliminary studies have shown that the abilities of computers using pattern recognition often match those of humans, or, as in the case of suspected microcalcification in mammography, exceed them.

There are still outstanding problems to solve in computer-aided diagnosis (CAD), such as the number of false alarms. Experts also estimate that the growing amount of data will not be able to be handled without the use of intelligent diagnosis software. “We are not seeking to replace doctors with machines, but rather to create an optimal team of both humans and computers,” said Hahn. “Computers and humans feature contrasting strengths and weaknesses, requiring us to think broadly about how much automation is reasonable for medicine.”

A further focus of the symposium is ‘personalized medicine.’ Until now, this has meant using genetic testing to find out whether a patient could benefit from a certain medication. However, it is now becoming clear that diagnostic methods can be customized for individual patients or certain symptoms, as seen in positron emission tomography (PET), a highly sensitive method used in tumor detection. To mark tumor cells, only a small amount of 'tracers' are presently used.

In laboratories, experts have already developed a number of tracers, although these must still pass extensive approval procedures. This growing array of options is also available in other fields of image-based diagnosis. However, these stand in opposition to the efforts of medicine to verify every new method based on large, randomized studies. "Thus, we must thoroughly reflect upon a responsible approach towards the quickly growing spectrum of diagnostic and therapeutic options and which roles computer support could play," said Hahn.

Finally, the session will tackle new and revolutionary therapeutic approaches for radiotherapy and particle therapy, among others. The novel term 'theranostics' is now being used to describe the close relationship between diagnosis and therapy in a combined, patient-specific approach. An even newer method directly links ultrasound diagnosis and therapy. Using this method, clinicians administer a special ultrasound contrast medium to the patient to record imaging of an organ, such as the kidney. The contrast medium serves not only to help depict tumor tissue, but also to deliver the medication.

The moment an image shows an abscess, the clinician could use a focused ultrasound signal to burst the microscopic bubbles that make up the contrast medium. This would discharge the medication that immediately surrounds the tumor, providing organ-preserving therapy with few side effects. "These new types of therapy are very promising," said Hahn, "but we must thoroughly investigate each new method to determine whether their benefits truly affect the clinical routine and whether they are economically feasible."

On the day following the symposium, the event will move to the MEVIS's institute facilities. Interactive demonstrations by MEVIS researchers will clearly demonstrate how the computer support of the future could take shape for fields such as breast cancer, lung, and stroke diagnosis as well as navigated, minimally invasive tumor therapy. A further demonstration will feature a new tablet app to support liver operations. In August, this app was tested for the first time during an operation in Germany. Media representatives are welcome to attend.

September 4: Symposium - "Disruptive Innovations in Medicine" at Jacobs University.

September 5: Open House at Fraunhofer MEVIS, 9 to 13:30. Visitors are very welcome to attend.

Bianka Hofmann | idw
Further information:
http://www.mevis.fraunhofer.de

More articles from Event News:

nachricht Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting
13.02.2017 | Kuratorium für die Tagungen der Nobelpreisträger in Lindau e.V.

nachricht Complex Loading versus Hidden Reserves
10.02.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>