Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International expert meeting IWBNS 2013 discusses technologies and markets for bulk GaN

29.10.2013
The market penetration of bulk GaN crystals is continuing: This is the conclusion of an international expert meeting organized by Fraunhofer IISB.

More than 70 internationally renowned experts met during the 8th International Workshop on Bulk Nitride Semiconductors (IWBNS) from Sept. 30th to Oct. 5th 2013 at Kloster Seeon in order to discuss the current status and future direction of growing bulk nitride crystals. The workshop was organized by Fraunhofer IISB an enjoyed the patronage of the German Association of Crystal Growth DGKK.

Nitride semiconductors are a strong research focus worldwide, since wide band gap semiconductors such as GaN and AlN have turned out to be the best choice for power electronic and optoelectronic devices with enhanced power efficiency or optical performance. GaN LEDs are increasingly dominating global lighting, and electronic GaN devices are expected to achieve a substantial volume in the market soon. However, one of the key requirements for boosting the market share of nitride devices and helping to develop green technologies is the availability of cheap, high quality native substrates, which is expected to have a great impact on the further development of power electronic systems for high power applications and high brightness LEDs and high power laser diodes.

Fraunhofer IISB has more than a decade of experience in the field of bulk nitride semi-conductors and is currently doing research on the HVPE growth of GaN crystals and on the growth of nitrides with the ammonothermal technique. The latter project is in close collaboration with the University of Erlangen - Nuremberg within the “Ammonothermalsynthesis” research group funded by the German Science Foundation DFG. Part of the research of Fraun-hofer IISB additionally focuses on the correlation of the electrical performance of the devices with the quality of the substrates and epitaxial layers. It was therefore a great honor that Dr. Elke Meissner from Fraunhofer IISB was selected by an international steering committee to host the 8th IWBNS workshop.

The IWBNS workshop is the only expert meeting in the world that is specially dedicated to the science and technology of the crystal growth of bulk nitrides. About the number of participants, the eighth IWBNS workshop was the largest one ever held. More than seventy renowned international experts from ten nations in Asia, the United States, South America and Eu-rope gathered for the first time in Germany at the beautiful, scenic location of Kloster Seeon in southern Bavaria.

It was an amazing meeting with an extremely high scientific level due to the outstanding contributions of the participants. The workshop covered the crystal growth and technology of GaN, AlN, InN and other binary nitrides. “The quality of the papers was the highest of the five of these meetings I have attended,” said James Edgar from Kansas State University. Jan Weyher from the Polish Academy of Science commented, “It was a very stimulating workshop, perfectly organized.”

The IWBNS has classic individual scientific spirit, intensity and character. It is designed to implement and increase an intense exchange of information that is as open as possible as well as deep scientific discussion and collaboration among academic, industrial, and government scientists regarding the challenges of growing high quality group III nitride crystals with a low concentration of structural defects and a controlled conductivity type. The very dense program of the 8th IWBNS clearly demonstrated the great necessity for further intensive exchange among experts in this field in order to further promote the penetration of the wide band gap materials into the market for energy efficient LEDs and power devices.

The organizers of the 8th IWBNS workshop gratefully acknowledge the support of several organizations that helped to make the meeting successful and the generous support for the participation of young scientists by the German Association of Crystal Growth DGKK and the International Union of Crystallography IUCR.

Contact
Dr. Elke Meißner
Fraunhofer IISB
Schottkystrasse 10, 91058 Erlangen, Germany
Tel. +49 9131 761 136
Fax +49 9131 761 280
elke.meissner@iisb.fraunhofer.de
Fraunhofer IISB
The Fraunhofer Institute for Integrated Systems and Device Technology IISB is one of the 66 institutes of the Fraunhofer-Gesellschaft. It conducts applied research and development in the fields of power electronics, mechatronics, micro and nanoelectronics. A staff of 180 works in contract research for industry and public authorities.

The institute is internationally acknowledged for its work on power electronic systems for energy efficiency, hybrid and electric cars and the development of technology, equipment, and materials for nanoelectronics.

In addition to its headquarters in Erlangen, the IISB has two branch labs in Nuremberg and Freiberg.

The institute closely cooperates with the Chair of Electron Devices of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

Weitere Informationen:

http://www.iwbns2013.iisb.fraunhofer.de/ Homepage 8th IWBNS 2013
http://www.iisb.fraunhofer.de/ Homepage Fraunhofer IISB

Dr. Elke Meißner | Fraunhofer-Institut
Further information:
http://www.iisb.fraunhofer.de

Further reports about: Fraunhofer Institut German language IWBNS LED electric car electronic system

More articles from Event News:

nachricht Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting
13.02.2017 | Kuratorium für die Tagungen der Nobelpreisträger in Lindau e.V.

nachricht Complex Loading versus Hidden Reserves
10.02.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>