Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International expert meeting IWBNS 2013 discusses technologies and markets for bulk GaN

29.10.2013
The market penetration of bulk GaN crystals is continuing: This is the conclusion of an international expert meeting organized by Fraunhofer IISB.

More than 70 internationally renowned experts met during the 8th International Workshop on Bulk Nitride Semiconductors (IWBNS) from Sept. 30th to Oct. 5th 2013 at Kloster Seeon in order to discuss the current status and future direction of growing bulk nitride crystals. The workshop was organized by Fraunhofer IISB an enjoyed the patronage of the German Association of Crystal Growth DGKK.

Nitride semiconductors are a strong research focus worldwide, since wide band gap semiconductors such as GaN and AlN have turned out to be the best choice for power electronic and optoelectronic devices with enhanced power efficiency or optical performance. GaN LEDs are increasingly dominating global lighting, and electronic GaN devices are expected to achieve a substantial volume in the market soon. However, one of the key requirements for boosting the market share of nitride devices and helping to develop green technologies is the availability of cheap, high quality native substrates, which is expected to have a great impact on the further development of power electronic systems for high power applications and high brightness LEDs and high power laser diodes.

Fraunhofer IISB has more than a decade of experience in the field of bulk nitride semi-conductors and is currently doing research on the HVPE growth of GaN crystals and on the growth of nitrides with the ammonothermal technique. The latter project is in close collaboration with the University of Erlangen - Nuremberg within the “Ammonothermalsynthesis” research group funded by the German Science Foundation DFG. Part of the research of Fraun-hofer IISB additionally focuses on the correlation of the electrical performance of the devices with the quality of the substrates and epitaxial layers. It was therefore a great honor that Dr. Elke Meissner from Fraunhofer IISB was selected by an international steering committee to host the 8th IWBNS workshop.

The IWBNS workshop is the only expert meeting in the world that is specially dedicated to the science and technology of the crystal growth of bulk nitrides. About the number of participants, the eighth IWBNS workshop was the largest one ever held. More than seventy renowned international experts from ten nations in Asia, the United States, South America and Eu-rope gathered for the first time in Germany at the beautiful, scenic location of Kloster Seeon in southern Bavaria.

It was an amazing meeting with an extremely high scientific level due to the outstanding contributions of the participants. The workshop covered the crystal growth and technology of GaN, AlN, InN and other binary nitrides. “The quality of the papers was the highest of the five of these meetings I have attended,” said James Edgar from Kansas State University. Jan Weyher from the Polish Academy of Science commented, “It was a very stimulating workshop, perfectly organized.”

The IWBNS has classic individual scientific spirit, intensity and character. It is designed to implement and increase an intense exchange of information that is as open as possible as well as deep scientific discussion and collaboration among academic, industrial, and government scientists regarding the challenges of growing high quality group III nitride crystals with a low concentration of structural defects and a controlled conductivity type. The very dense program of the 8th IWBNS clearly demonstrated the great necessity for further intensive exchange among experts in this field in order to further promote the penetration of the wide band gap materials into the market for energy efficient LEDs and power devices.

The organizers of the 8th IWBNS workshop gratefully acknowledge the support of several organizations that helped to make the meeting successful and the generous support for the participation of young scientists by the German Association of Crystal Growth DGKK and the International Union of Crystallography IUCR.

Contact
Dr. Elke Meißner
Fraunhofer IISB
Schottkystrasse 10, 91058 Erlangen, Germany
Tel. +49 9131 761 136
Fax +49 9131 761 280
elke.meissner@iisb.fraunhofer.de
Fraunhofer IISB
The Fraunhofer Institute for Integrated Systems and Device Technology IISB is one of the 66 institutes of the Fraunhofer-Gesellschaft. It conducts applied research and development in the fields of power electronics, mechatronics, micro and nanoelectronics. A staff of 180 works in contract research for industry and public authorities.

The institute is internationally acknowledged for its work on power electronic systems for energy efficiency, hybrid and electric cars and the development of technology, equipment, and materials for nanoelectronics.

In addition to its headquarters in Erlangen, the IISB has two branch labs in Nuremberg and Freiberg.

The institute closely cooperates with the Chair of Electron Devices of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

Weitere Informationen:

http://www.iwbns2013.iisb.fraunhofer.de/ Homepage 8th IWBNS 2013
http://www.iisb.fraunhofer.de/ Homepage Fraunhofer IISB

Dr. Elke Meißner | Fraunhofer-Institut
Further information:
http://www.iisb.fraunhofer.de

Further reports about: Fraunhofer Institut German language IWBNS LED electric car electronic system

More articles from Event News:

nachricht Expert meeting “Health Business Connect” will connect international medical technology companies
20.04.2017 | IVAM Fachverband für Mikrotechnik

nachricht Wenn der Computer das Gehirn austrickst
18.04.2017 | Hochschule für Gestaltung Schwäbisch Gmünd

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>