Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International expert meeting IWBNS 2013 discusses technologies and markets for bulk GaN

29.10.2013
The market penetration of bulk GaN crystals is continuing: This is the conclusion of an international expert meeting organized by Fraunhofer IISB.

More than 70 internationally renowned experts met during the 8th International Workshop on Bulk Nitride Semiconductors (IWBNS) from Sept. 30th to Oct. 5th 2013 at Kloster Seeon in order to discuss the current status and future direction of growing bulk nitride crystals. The workshop was organized by Fraunhofer IISB an enjoyed the patronage of the German Association of Crystal Growth DGKK.

Nitride semiconductors are a strong research focus worldwide, since wide band gap semiconductors such as GaN and AlN have turned out to be the best choice for power electronic and optoelectronic devices with enhanced power efficiency or optical performance. GaN LEDs are increasingly dominating global lighting, and electronic GaN devices are expected to achieve a substantial volume in the market soon. However, one of the key requirements for boosting the market share of nitride devices and helping to develop green technologies is the availability of cheap, high quality native substrates, which is expected to have a great impact on the further development of power electronic systems for high power applications and high brightness LEDs and high power laser diodes.

Fraunhofer IISB has more than a decade of experience in the field of bulk nitride semi-conductors and is currently doing research on the HVPE growth of GaN crystals and on the growth of nitrides with the ammonothermal technique. The latter project is in close collaboration with the University of Erlangen - Nuremberg within the “Ammonothermalsynthesis” research group funded by the German Science Foundation DFG. Part of the research of Fraun-hofer IISB additionally focuses on the correlation of the electrical performance of the devices with the quality of the substrates and epitaxial layers. It was therefore a great honor that Dr. Elke Meissner from Fraunhofer IISB was selected by an international steering committee to host the 8th IWBNS workshop.

The IWBNS workshop is the only expert meeting in the world that is specially dedicated to the science and technology of the crystal growth of bulk nitrides. About the number of participants, the eighth IWBNS workshop was the largest one ever held. More than seventy renowned international experts from ten nations in Asia, the United States, South America and Eu-rope gathered for the first time in Germany at the beautiful, scenic location of Kloster Seeon in southern Bavaria.

It was an amazing meeting with an extremely high scientific level due to the outstanding contributions of the participants. The workshop covered the crystal growth and technology of GaN, AlN, InN and other binary nitrides. “The quality of the papers was the highest of the five of these meetings I have attended,” said James Edgar from Kansas State University. Jan Weyher from the Polish Academy of Science commented, “It was a very stimulating workshop, perfectly organized.”

The IWBNS has classic individual scientific spirit, intensity and character. It is designed to implement and increase an intense exchange of information that is as open as possible as well as deep scientific discussion and collaboration among academic, industrial, and government scientists regarding the challenges of growing high quality group III nitride crystals with a low concentration of structural defects and a controlled conductivity type. The very dense program of the 8th IWBNS clearly demonstrated the great necessity for further intensive exchange among experts in this field in order to further promote the penetration of the wide band gap materials into the market for energy efficient LEDs and power devices.

The organizers of the 8th IWBNS workshop gratefully acknowledge the support of several organizations that helped to make the meeting successful and the generous support for the participation of young scientists by the German Association of Crystal Growth DGKK and the International Union of Crystallography IUCR.

Contact
Dr. Elke Meißner
Fraunhofer IISB
Schottkystrasse 10, 91058 Erlangen, Germany
Tel. +49 9131 761 136
Fax +49 9131 761 280
elke.meissner@iisb.fraunhofer.de
Fraunhofer IISB
The Fraunhofer Institute for Integrated Systems and Device Technology IISB is one of the 66 institutes of the Fraunhofer-Gesellschaft. It conducts applied research and development in the fields of power electronics, mechatronics, micro and nanoelectronics. A staff of 180 works in contract research for industry and public authorities.

The institute is internationally acknowledged for its work on power electronic systems for energy efficiency, hybrid and electric cars and the development of technology, equipment, and materials for nanoelectronics.

In addition to its headquarters in Erlangen, the IISB has two branch labs in Nuremberg and Freiberg.

The institute closely cooperates with the Chair of Electron Devices of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

Weitere Informationen:

http://www.iwbns2013.iisb.fraunhofer.de/ Homepage 8th IWBNS 2013
http://www.iisb.fraunhofer.de/ Homepage Fraunhofer IISB

Dr. Elke Meißner | Fraunhofer-Institut
Further information:
http://www.iisb.fraunhofer.de

Further reports about: Fraunhofer Institut German language IWBNS LED electric car electronic system

More articles from Event News:

nachricht ASEAN Member States discuss the future role of renewable energy
17.10.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht World Health Summit 2017: International experts set the course for the future of Global Health
10.10.2017 | World Health Summit

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>