Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First evidence for painless atrial fibrillation treatment

04.07.2014

Cardiac optogenetics achieve defibrillation without the pain of electric shocks

Barcelona, 4 July 2014: The first evidence for a shockless treatment for atrial fibrillation (AF) will be presented today at Frontiers in CardioVascular Biology (FCVB) 2014 in Barcelona, Spain. The meeting is organised by the Council on Basic Cardiovascular Science of the European Society of Cardiology (ESC) in collaboration with 13 European cardiovascular science societies. http://spo.escardio.org/Session


This is the logo for FCVB 2014.

Credit: esc

Details.aspx?eevtid=65&sessId=13104

Dr Brian O. Bingen, first author, said: "AF is the most common cardiac arrhythmia. Symptoms range from the feeling of fish flapping in the chest, to tiredness and exercise intolerance. AF can lead to tachycardia induced cardiomyopathy and thromboembolic events which increase the risk of morbidity and death."

He added: "Preventing these symptoms and complications requires bringing the patient out of AF and back to the normal sinus rhythm. The quickest way to do that is to deliver an electric shock. The shock depolarises and synchronises the heart muscle and allows the sinus node to re-establish a normal rhythm."

Dr Bingen continued: "Shocks are currently the most effective way to get patients directly back into sinus rhythm but they are very painful. To deliver a shock you have to give anaesthesia which comes with its own possible adverse effects."

AF usually progresses from a paroxysmal form, in which episodes of AF last from several minutes up to 7 days, to a persistent and eventually a chronic form. People with the latter are in AF 24 hours a day, 7 days a week, and shock treatment no longer works. Dr Bingen said: "AF causes structural changes to the atrium which make patients more prone to subsequent induction of AF. That's another reason to get patients back into sinus rhythm as soon as possible."

For the current study, the researchers devised a method of shockless defibrillation. They used optogenetics to genetically insert depolarising ion channels into the heart that can be activated by light. Dr Bingen said: "The theory was that we could just turn a light switch on and depolarise the entire myocardium without needing a shock. In theory, the patient could be given an implantable device with a mesh of light emitting diodes (LEDs) and when AF occurs you turn the light on and the AF stops."

During arrhythmias there is activity subepicardially but the heart is a complex 3D structure and it is only possible to directly observe the epicardium (outside layer). To see how their method worked subepicardially, the researchers developed 2D hearts. They isolated cardiac muscle cells from the rat atrium, replated them in a culture dish and allowed the cells to form intercellular connections, creating a 2D heart.

AF was induced in 31 of these 2D hearts. The researchers used a lentivirus to insert a gene into the 2D hearts called calcium-translocating channelrhodopsin (CatCh), which is a light sensitive depolarising channel.

Dr Bingen said: "Then it was just a matter of switching on the light and seeing what happened. We found that in all 31 of these 2D hearts we were able to achieve the 2D equivalent of cardioversion into sinus rhythm. The mechanism we saw was a bit different than the normal defibrillation but was equally effective."

He continued: "We now have to test our method in the 3D setting. In that scenario we won't be able to see the defibrillating mechanism in as much detail, but we hope that it will be possible to terminate AF in the complete heart. We will also test other types of light or energy sources that penetrate the body more deeply and could be applied externally, avoiding the need for an implanted device."

Dr Bingen continued: "This is the first evidence of a shockless defibrillation. Our method of using optogenetics to defibrillate by light is completely painless and looks promising but more research is needed before it can be applied in patients."

Please note Spanish version is available for this Press Release

Note to Editors

About FCVB

Frontiers in CardioVascular Biology (FCVB) is a comprehensive basic science conference organised every two years by the ESC Council on Basic Cardiovascular Science, whose mission is to enhance the importance of basic science to clinical cardiology. FCVB 2014 was organised in collaboration with 13 European cardiovascular science societies.

About the European Society of Cardiology (ESC)

The European Society of Cardiology (ESC) represents more than 80 000 cardiology professionals across Europe and the Mediterranean. Its mission is to reduce the burden of cardiovascular disease in Europe.

Information for journalists attending FCVB 2014

ESC Press Office | Eurek Alert!

More articles from Event News:

nachricht Call for Paper – Panacea Green Infrastructure?
30.09.2016 | Institut für Landes- und Stadtentwicklungsforschung gGmbH

nachricht HLF: From an experiment to an establishment
29.09.2016 | Heidelberg Laureate Forum Foundation

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>