Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conference to Learn About Sun's Bubble in Stuff Between the Stars

09.01.2009
The first report on data from NASA's Interstellar Boundary Explorer (IBEX) satellite, which is measuring the size and shape of the sun's "bubble" in space, is scheduled to be presented this weekend at a conference in Hawai'i.

Although it should take about a year to map the full sky, details from the satellite's first data will be reported at "Voyagers in the Heliosheath," a conference organized by The University of Alabama in Huntsville’s Center for Space Plasma and Aeronomic Research. The conference is scheduled for Jan 9-14 on the island of Kauai, HI.

For more than a dozen years, Dr. Gary Zank and his small team of scientists now at UAHuntsville have developed models that try to explain what is happening at the boundary between the outer edges of the solar wind and the thin soup of particles and magnetic fields that flow around the edge of the Milky Way galaxy -- the sun's bubble in the stuff between the stars.

"For the first time, we will be able to map the bubble in which we live," said Zank, the Pei-Ling Chan eminent scholar in physics at UAHuntsville. "This is the first really detailed way to probing the material and the magnetic fields right outside where we live."

"Right" outside is a relative thing: The nearest edge of the solar system's bubble, or heliosphere, is about one hundred times as far from the sun as Earth or about 9.3 billion miles away -- approximately two and a half times farther out than the non-planet Pluto.

A hot solar particle blown into space by the solar wind will take just over two years to travel that distance. During that time it might cool from one million degrees Celsius to only 20,000 C when it runs into the termination shock at about 400 kilometers per second (on the order of 864,000 mph).

Starting about 1995 when they were at the University of California at Riverside, Zank and his colleagues have developed detailed models of what probably happens when warm solar plasma -- in astronomy 20,000 C is "warm" -- runs into the ambient atoms, ions and molecules that orbit the galaxy.

By forecasting what this collision zone should look like from Earth, these models helped scientists and engineers design the sensors and instruments aboard IBEX. The satellite was launched in October and in mid-November entered a highly elliptic (oblong) orbit that takes the satellite five-sixths of the distance to the Moon.

The UAHuntsville models will also help scientists analyze data collected by the IBEX sensors. Those sensors detect energetic neutral atoms formed in the collision zone when energetic charged particles "steal" an electron from another particle.

Because they are now electrically neutral these energized atoms are no longer affected by solar magnetic fields, so they travel in straight lines. Some of them will wind up in IBEX sensors, which count oxygen, hydrogen and neon atoms, measure the energy they carry and calculate the direction from which they traveled to Earth.

Throw in a little calculus and the IBEX team can now create full-sky maps of the heliosphere.

"The sky maps will provide a global structure of the heliosphere," Zank said. "It will also tell us the direction that the local interstellar field flows. It will tell us how hot that region is and how big it is."

The models say the sun's bubble should be tear shaped, like the wave around a tree limb dipped into a flowing river.

While they are mapping the bubble, scientists also hope to solve a mystery found in data from NASA's STEREO satellites. Although designed as solar observatories, those satellites also detected an intense "column" of energetic neutral atoms that does not seem to line up with any expected or known source.

"The STEREO data is a real puzzle," Zank said. "If STEREO is seeing energetic neutrals, then there are ten times too many of them. So that's one thing we will be trying to study and understand."

Phillip Gentry | Newswise Science News
Further information:
http://uahnews.uah.edu
http://www.ibex.swri.edu/multimedia/index.shtml

More articles from Event News:

nachricht Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology
22.05.2017 | IVAM Fachverband für Mikrotechnik

nachricht Innovation 4.0: Shaping a humane fourth industrial revolution
17.05.2017 | Max-Planck-Institut für Innovation und Wettbewerb

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>