Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BrainScaleS Conference: From Neurobiology to New Computer Architectures

25.09.2014

European research network to hold final conference at the Kirchhoff Institute for Physics

The European BrainScaleS project has made groundbreaking progress over the last four years by linking neuroscientific findings with mathematical modelling and developing innovative computer architectures.

To review the major project results and explore them in the context of worldwide research in this field, researchers will gather for the 4th Frontiers in Neuromorphic Computing Conference on 2 October 2014, hosted by the Kirchhoff Institute for Physics of Heidelberg University. In addition to researchers from the interdisciplinary research network of 17 European partners, renowned scientists from the USA, Canada, Japan and Switzerland are also expected to attend this final BrainScaleS conference.

The BrainScaleS project, which was funded by the European Union with 9.2 million euros, represents an intensive interdisciplinary collaboration between experimental and theoretical neuroscientists, engineers and physicists. The project revolved around the design and implementation of so-called demonstrators, in which specific cognitive tasks of biological systems from neurobiology are taken and implemented in synthetic networks.

The spectrum ranges from simple perception and perception-action loops to abstract, function-driven neuronal networks. The conceptual work in the project provide the inspiration for the construction of new types of computers that differ fundamentally from the established Von Neumann architecture of standard digital computers. The result was a neuromorphic computer whose architecture is comparable only to that developed at IBM Research – Almaden in the USA and the University of Manchester (Great Britain).

International speakers at the Frontiers in Neuromorphic Computing Conference are Palm Computing founder Jeff Hawkins, who now heads the Numenta start-up firm in Silicon Valley, and the Director of the Center for Neural Science at New York University, Tony Movshon.

The list of speakers also features Chris Eliasmith, author of the book “How to Build a Brain,” Tomoki Fukai from the RIKEN research institution in Japan and Sam Gershman from the Massachusetts Institute of Technology. Also expected is Thomas Schulthess of ETH Zurich, the director of Europe’s most powerful supercomputer.

The BrainScaleS project is one of the pillars of the European Human Brain Project (HBP) launched a year ago; Heidelberg University will also host the HBP’s annual conference from 29 September to 1 October 2014. The Heidelberg working group led by Prof. Dr. Karlheinz Meier initiated and directed BrainScaleS.

Note to news desks:
Media representatives are cordially invited to attend and report on the conference, which will be held in English. Please register in advance at: https://brainscales.kip.uni-heidelberg.de/jss/AttendMeeting?eMAt=49

Contact:
Prof. Dr. Karlheinz Meier
Kirchhoff Institute for Physics
Phone: +49 6221 54-9830
meierk@kip.uni-heidelberg.de

Communications and Marketing
Press Office
Phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://brainscales.kip.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Event News:

nachricht International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open
20.03.2017 | Leibniz-Institut für ökologische Raumentwicklung e. V.

nachricht CONNECT 2017: International congress on connective tissue
14.03.2017 | Universität Ulm

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>