Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aerogels - the world's lightest solids: International project meeting of NanoHybrids at TUHH

15.05.2017

Project meeting of the NanoHybrids EU project on 15 and 16 May 2017 – an important milestone

The EU research project NanoHybrids, uniting well-known partners from European research and industry, can report its first successes: New methods have been developed for manufacturing organic and hybrid aerogels and they have already been used to produce initial small quantities of organic aerogels.

Industry and research partners have cooperated closely to achieve this. Thus significant milestones have already been achieved just 18 months into the EU project.

Scientific exchange between the partners is actively cultivated through mutual visits and joint workshops. Results have been submitted to the European Commission in the latest periodic report.

The project meeting on 15 and 16 May 2017 in Hamburg sees the beginning of the second project phase. The European Commission project officer and the appointed reviewer will be present on both days to see for themselves the progress being made.

A special highpoint of the meeting will be the visit to the Institute of Thermal Separation Processes laboratories at Hamburg University of Technology (TUHH). Here partners will also have the opportunity to view the new plant for producing aerogels.

The goal of the EU project “NanoHybrids – New generation of nanoporous organic and hybrid aerogels for industrial applications: from the lab to pilot scale production” is to develop a pilot-scale production system for novel aerogels and test potential industrial applications. It is funded under Horizon 2020, the biggest EU research and innovation programme, as one of a series of projects charged with bridging the gap between nanotechnology research, pilot-scale production and markets.

The Institute of Thermal Separation Processes led by Professor Irina Smirnova coordinates the project with the support of Tutech Innovation GmbH, a TUHH subsidiary. “What makes NanoHybrids unusual is that it is coordinated by a German partner,” says Ingo Rey of the National Contact Point Materials at Project Management Jülich.

“That is very rare among the Horizon 2020 projects in the ‘Nanotechnologies, Advanced Materials, Advanced Manufacturing and Processing, and Biotechnology’ section. In the nanomaterials group only two innovation projects have been coordinated by German institutes since 2014, one of them being NanoHybrids.”

In addition to TUHH (Institute of Thermal Separation Processes), the project involves well-known industry partners and research institutes, in particular BASF Polyurethanes GmbH, Dräger Safety AG & Co. KGaA, Nestlé and the German Aerospace Center (DLR Cologne). The project brings together a total of 12 international partners.

The Institute of Thermal Separation Processes is incorporated in the research fields "Integrated Biotechnology and Process Engineering" and "Regeneration, Implants and Medical Technology" at TUHH. Research includes experimental and theoretical work on the following topics:

• High-pressure engineering
• Supercritical fluids
• Thermodynamics of biologically relevant systems
• Downstream processes

Prof. Smirnova has been head of the institute since 2008. In the course of her scientific career she has worked at the University of St Petersburg, TU Berlin, University of Erlangen-Nuremberg and Sogang University in South Korea.

Prof. Smirnova and BASF have been working together for many years. For the past six years their cooperation has centred on highly porous aerogels.

As part of this bilateral cooperation, Prof. Smirnova and Dr Mark Fricke of BASF Polyurethanes GmbH have been working on drying an organic polyurethane aerogel to produce a high-performance insulation material that BASF has presented to the public under the SLENTITE® name. “The material has to be dried in a particular way so that it retains its special structure,” says Dr Fricke. “With the support of Prof. Smirnova and her team we have achieved this.” The result is a polyurethane aerogel in the form of a mechanically stable panel that is an outstanding insulator, handles well and is water vapour permeable. “Information and know-how from TUHH and BASF have come together in the project to create a new product,” adds Prof. Smirnova. BASF built the world’s first ever pilot plant for manufacturing organic aerogels in panel form in Lemförde in 2015. This plant will be used as part of the EU project for producing small aerogel particles on a larger scale.

Horizon 2020 is the EU Framework Programme for Research and Innovation. The goal of the funding programme is to build a science and innovation-based society and a competitive economy throughout the EU while contributing to sustainable development.

Contact:
Prof. Dr.-Ing. Irina Smirnova
E-Mail: irina.smirnova (at) tuhh.de

Weitere Informationen:

http://www.nanohybrids.eu


Jasmine Ait-Djoudi | idw - Informationsdienst Wissenschaft
Further information:
http://www.tuhh.de

Further reports about: BASF Biotechnology Innovation aerogels industrial applications

More articles from Event News:

nachricht Ecology Across Borders: International conference brings together 1,500 ecologists
15.11.2017 | Gesellschaft für Ökologie e.V.

nachricht Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel
15.11.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water cooling for the Earth's crust

23.11.2017 | Earth Sciences

Nano-watch has steady hands

23.11.2017 | Physics and Astronomy

Batteries with better performance and improved safety

23.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>