Forum for Science, Industry and Business
Search our Site:

Topic (optional):

Math detects contamination in water distribution networks

None of us want to experience events like the Camelford water pollution incident in Cornwall, England, in the late eighties, or more recently, the Crestwood, Illinois, water contamination episode in 2009 where accidental pollution of drinking water led to heart-wrenching consequences to consumers, including brain damage, high cancer risk, and even death. In the case of such catastrophes, it is important to have a method to identify and curtail contaminations immediately to minimize impact on the public.

A paper published earlier this month in the SIAM Journal on Applied Mathematics considers the identification of contaminants in a water distribution network as an optimal control problem within a networked system.

“Water supply networks are an essential part of our infrastructure. Sometimes the water in such a network can be contaminated, often by human error, causing the use of polluted water for drinking water production. In the case of such a situation, it is important to have a method to identify the location of the pollution source,” says the paper’s author, Martin Gugat, explaining the significance of his work.

The paper considers a water distribution network with a finite number of nodes where contamination can occur in the pipes.

“The contamination spreads dynamically through the network with time. So, in order to model the system, a model of the evolution in time is necessary,” explains Gugat. “In our approach, we use a partial differential equation (PDE) to model how pollution spreads in the network.”

By using a PDE model for transport of contaminants, the problem of identifying the source becomes an optimal control problem. The solution is calculated using equidistant time grids, which allows one to determine the values of contamination at all potential sources on the time grid. Available data on pollution and network flow is incorporated into the model.

Employing certain assumptions for travel times through the pipes, the author uses a least-squares method to solve the problem. The least squares method provides approximate solutions to optimization problems that are relatively eﬃcient to compute using the tools of numerical linear algebra.

This provides a fast method to identify possible contamination sources, explains Gugat. “For a really accurate model, however, a full system of three-dimensional PDEs is necessary. But with three-dimensional PDEs, simulation is only possible for small networks,” he says. “This illustrates that to solve real life problems on real networks, there is a trade-off between the accuracy of the model and its utility.”

While the method is tested numerically in the paper, additional work would involve testing the system with an existing water network to demonstrate its workability in practice.

Another future direction is toward elimination of the contaminant. “The second step after the identification of the contamination source is a strategy to flush the polluted water out of the network as fast as possible with acceptable operational cost. The development of an optimal strategy for such a rehabilitation of the water supply is an interesting question for future research,” says Gugat.

“For a more detailed model of the process, more complex nonlinear PDEs could be used,” he continues. “The cost of the numerical treatment of complex PDEs for large networks is prohibitive. Applied mathematics has to offer models that can be used according to the problem requirements to solve problems with network graphs of a realistic size.”

Source Article:
Contamination Source Determination in Water Distribution Networks
Martin Gugat, SIAM Journal on Applied Mathematics, 72(6), 1772–1791 (Online publish date: 5 November 2012)

Martin Gugat is a researcher at the University of Erlangen-Nuremberg, Lehrstuhl f¨ur angewandte Mathematik 2, in Erlangen, Germany. This work was supported by DFG research cluster 1253: Optimization with Partial Diﬀerential Equations, grant GU 376/7-1.

The Society for Industrial and Applied Mathematics (SIAM), headquartered in Philadelphia, Pennsylvania, is an international society of over 14,000 individual members, including applied and computational mathematicians and computer scientists, as well as other scientists and engineers. Members from 85 countries are researchers, educators, students, and practitioners in industry, government, laboratories, and academia. The Society, which also includes nearly 500 academic and corporate institutional members, serves and advances the disciplines of applied mathematics and computational science by publishing a variety of books and prestigious peer-reviewed research journals, by conducting conferences, and by hosting activity groups in various areas of mathematics. SIAM provides many opportunities for students including regional sections and student chapters. Further information is available at www.siam.org.

Further information: www.siam.org

next article

More articles from Ecology, The Environment and Conservation:

Industrial Age Helps Some Coastal Regions Capture Carbon Dioxide
06.12.2013 | Ohio State University

Rising Ocean Acidification Leads to Anxiety in Fish
05.12.2013 | University of California - San Diego

The most recent press releases about innovation >>>

Overview of the latest five Focus news of the innovations-report:
In the focus: Three-dimensional view helps laser in building new molecules

International team of scientists develops new feedback method for optimizing the laser pulse shapes used in the control of chemical reactions

In many ways, traditional chemical synthesis is similar to cooking. To alter the final product, you can change the ingredients or their ratio, change the method of mixing ingredients, or change the temperature or pressure of the environment of the ingredients.

Like an accomplished chef, chemists have become very skilled ...

In the focus: Resistant against the flu

A genetic defect protects mice from infection with influenza viruses

A new study published in the scientific journal PLOS Pathogens points out that mice lacking a protein called Tmprss2 are no longer affected by certain flu viruses.

The discovery was made by researchers from the Helmholtz Centre for Infection Research (HZI) in Braunschweig in collaboration with colleagues from Göttingen and ...

In the focus: Light quality in offices - Global study gets underway with online user survey

The Light: Global study gets underway with online user survey

Light has a fundamental impact on our sense of well-being and performance. In cooperation with Zumtobel, a supplier of lighting solutions, Fraunhofer IAO has launched a global user survey of lighting quality in offices. The objective is to identify the best lighting conditions for a variety of spaces and lighting ...

In the focus: ‘Spooky action’ builds a wormhole between ‘entangled’ particles

Quantum entanglement, a perplexing phenomenon of quantum mechanics that Albert Einstein once referred to as “spooky action at a distance,” could be even spookier than Einstein perceived.

Physicists at the University of Washington and Stony Brook University in New York believe the phenomenon might be intrinsically linked with wormholes, hypothetical features of space-time that in popular science fiction can provide a much-faster-than-light shortcut from one part of the universe to another.

But here’s the catch: One couldn’t actually ...

In the focus: Explosive growth of young star

A star is formed when a large cloud of gas and dust condenses and eventually becomes so dense that it collapses into a ball of gas, where the pressure heats the matter, creating a glowing gas ball – a star is born.

New research from the Niels Bohr Institute, among others, shows that a young, newly formed star in the Milky Way had such an explosive growth, that it was initially about 100 times brighter than it is now. The results are published in the scientific journal, Astrophysical Journal Letters.

The young ...

All Focus news of the innovations-report >>>

B2B Search

Product / Service
Company / Organisation

Latest News

06.12.2013 | Materials Sciences

06.12.2013 | Life Sciences

06.12.2013 | Life Sciences