Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World phosphorous use crosses critical threshold

15.02.2011
Recalculating the global use of phosphorous, a fertilizer linchpin of modern agriculture, a team of researchers warns that the world's stocks may soon be in short supply and that overuse in the industrialized world has become a leading cause of the pollution of lakes, rivers and streams.

Writing in the Feb. 14 edition of the journal Environmental Research Letters, Stephen Carpenter of the University of Wisconsin-Madison and Elena Bennett of McGill University report that the human use of phosphorous, primarily in the industrialized world, is causing the widespread eutrophication of fresh surface water. What's more, the minable global stocks of phosphorous are concentrated in just a few countries and are in decline, posing the risk of global shortages within the next 20 years.

"There is a finite amount of phosphorous in the world," says Carpenter, a UW-Madison professor of limnology and one of the world's leading authorities on lakes and streams. "This is a material that's becoming more rare and we need to use it more efficiently."

Phosphorous is an essential element for life. Living organisms, including humans, have small amounts and the element is crucial for driving the energetic processes of cells. In agriculture, phosphorous mined from ancient marine deposits is widely used to boost crop yields. The element also has other industrial uses.

But excess phosphorous from fertilizer that washes from farm fields and suburban lawns into lakes and streams is the primary cause of the algae blooms that throw freshwater ecosystems out of kilter and degrade water quality. Phosphorous pollution poses a risk to fish and other aquatic life as well as to the animals and humans who depend on clean fresh water. In some instances, excess phosphorous sparks blooms of toxic algae, which pose a direct threat to human and animal life.

"If you have too much phosphorous, you get eutrophication," explains Carpenter of the cycle of excessive plant and algae growth that significantly degrades bodies of fresh water. "Phosphorous stimulates the growth of algae and weeds near shore and some of the algae can contain cyanobacteria, which are toxic. You lose fish. You lose water quality for drinking."

The fertilizer-fueled algae blooms themselves amplify the problem as the algae die and release accumulated phosphorous back into the water.

Carpenter and Bennett write in their Environmental Research Letters report that the "planetary boundary for freshwater eutrophication has been crossed while potential boundaries for ocean anoxic events and depletion of phosphate rock reserves loom in the future."

Complicating the problem, says Carpenter, is the fact that excess phosphorous in the environment is a problem primarily in the industrialized world, mainly Europe, North America and parts of Asia. In other parts of the world, notably Africa and Australia, soils are phosphorous poor, creating a stark imbalance. Ironically, soils in places like North America, where fertilizers with phosphorous are most commonly applied, are already loaded with the element.

"Some soils have plenty of phosphorous, and some soils do not and you need to add phosphorous to grow crops on them," Carpenter notes. "It's this patchiness that makes the problem tricky."

Bennett and Carpenter argue that agricultural practices to better conserve phosphate within agricultural ecosystems are necessary to avert the widespread pollution of surface waters. Phosphorous from parts of the world where the element is abundant, they say, can be moved to phosphorous deficient regions of the world by extracting phosphorous from manure, for example, using manure digesters.

Deposits of phosphate, the form of the element that is mined for agriculture and other purposes, take many millions of years to form. The nations with the largest reserves of the element are the United States, China and Morocco.

The new study was supported by grants from the U.S. National Science Foundation and the Natural Sciences and Engineering Research Council of Canada.

Terry Devitt, 608-262-8282, trdevitt@wisc.edu

Steve Carpenter | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>