Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World phosphorous use crosses critical threshold

15.02.2011
Recalculating the global use of phosphorous, a fertilizer linchpin of modern agriculture, a team of researchers warns that the world's stocks may soon be in short supply and that overuse in the industrialized world has become a leading cause of the pollution of lakes, rivers and streams.

Writing in the Feb. 14 edition of the journal Environmental Research Letters, Stephen Carpenter of the University of Wisconsin-Madison and Elena Bennett of McGill University report that the human use of phosphorous, primarily in the industrialized world, is causing the widespread eutrophication of fresh surface water. What's more, the minable global stocks of phosphorous are concentrated in just a few countries and are in decline, posing the risk of global shortages within the next 20 years.

"There is a finite amount of phosphorous in the world," says Carpenter, a UW-Madison professor of limnology and one of the world's leading authorities on lakes and streams. "This is a material that's becoming more rare and we need to use it more efficiently."

Phosphorous is an essential element for life. Living organisms, including humans, have small amounts and the element is crucial for driving the energetic processes of cells. In agriculture, phosphorous mined from ancient marine deposits is widely used to boost crop yields. The element also has other industrial uses.

But excess phosphorous from fertilizer that washes from farm fields and suburban lawns into lakes and streams is the primary cause of the algae blooms that throw freshwater ecosystems out of kilter and degrade water quality. Phosphorous pollution poses a risk to fish and other aquatic life as well as to the animals and humans who depend on clean fresh water. In some instances, excess phosphorous sparks blooms of toxic algae, which pose a direct threat to human and animal life.

"If you have too much phosphorous, you get eutrophication," explains Carpenter of the cycle of excessive plant and algae growth that significantly degrades bodies of fresh water. "Phosphorous stimulates the growth of algae and weeds near shore and some of the algae can contain cyanobacteria, which are toxic. You lose fish. You lose water quality for drinking."

The fertilizer-fueled algae blooms themselves amplify the problem as the algae die and release accumulated phosphorous back into the water.

Carpenter and Bennett write in their Environmental Research Letters report that the "planetary boundary for freshwater eutrophication has been crossed while potential boundaries for ocean anoxic events and depletion of phosphate rock reserves loom in the future."

Complicating the problem, says Carpenter, is the fact that excess phosphorous in the environment is a problem primarily in the industrialized world, mainly Europe, North America and parts of Asia. In other parts of the world, notably Africa and Australia, soils are phosphorous poor, creating a stark imbalance. Ironically, soils in places like North America, where fertilizers with phosphorous are most commonly applied, are already loaded with the element.

"Some soils have plenty of phosphorous, and some soils do not and you need to add phosphorous to grow crops on them," Carpenter notes. "It's this patchiness that makes the problem tricky."

Bennett and Carpenter argue that agricultural practices to better conserve phosphate within agricultural ecosystems are necessary to avert the widespread pollution of surface waters. Phosphorous from parts of the world where the element is abundant, they say, can be moved to phosphorous deficient regions of the world by extracting phosphorous from manure, for example, using manure digesters.

Deposits of phosphate, the form of the element that is mined for agriculture and other purposes, take many millions of years to form. The nations with the largest reserves of the element are the United States, China and Morocco.

The new study was supported by grants from the U.S. National Science Foundation and the Natural Sciences and Engineering Research Council of Canada.

Terry Devitt, 608-262-8282, trdevitt@wisc.edu

Steve Carpenter | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>