Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World Oceans Month Brings Mixed News for Oysters

13.06.2013
Ocean acidification inhibits shell formation, but interventions at hatcheries may offset some effects, scientists find

In World Oceans Month, there's mixed news for the Pacific Northwest oyster industry.


Research site in Netarts Bay, Oregon, at low tide; rows of bags contain seed oysters.

For the past several years, it has struggled with significant losses due to ocean acidification. Oyster larvae have had mortality rates high enough to render production no longer economically feasible.

Now a new study documents why oysters appear so sensitive to increasing acidity, but also offers some hope for the future.

It isn't necessarily a case of acidic water dissolving the oysters' shells, scientists say. It's water high in carbon dioxide altering shell formation rates, energy usage and, ultimately, the growth and survival of young oysters.

"The failure of oyster seed production in Northwest Pacific coastal waters is one of the most graphic examples of ocean acidification effects on important commercial shellfish," said Dave Garrison, program director in the National Science Foundation's (NSF) Division of Ocean Sciences.

NSF funded the study through its Ocean Acidification Program, part of NSF's Science, Engineering and Education for Sustainability programs.

"This research is among the first to identify the links among organism physiology, ocean carbonate chemistry and oyster seed mortality," said Garrison.

Results of the study are online in the journal Geophysical Research Letters, published by the American Geophysical Union.

"From the time eggs are fertilized, Pacific oyster larvae precipitate roughly 90 percent of their body weight as a calcium carbonate shell within 48 hours," said George Waldbusser, an Oregon State University marine ecologist and lead author of the paper.

"Young oysters rely solely on the energy they derive from the egg because they have not yet developed feeding organs."

During exposure to increasing carbon dioxide in acidified water, however, it becomes more energetically expensive for organisms like oysters to build shells.

Adult oysters and other bivalves may grow more slowly when exposed to rising carbon dioxide levels. But larvae in the first two days of life do not have the luxury of delayed growth.

"They must build their first shell quickly on a limited amount of energy--and along with the shell comes the organ to capture external food," said Waldbusser.

"It becomes a death race of sorts. Can the oyster build its shell quickly enough to allow its feeding mechanism to develop before it runs out of energy from the egg?"

The results are important, marine scientists say, because they document for the first time the links among shell formation rate, available energy, and sensitivity to acidification.

The researchers say that the faster the rate of shell formation, the more energy is needed. Oyster embryos building their first shells need "to make a lot of shell on short order," said Waldbusser.

"As the carbon dioxide in seawater increases, but before waters become corrosive, calcium carbonate precipitation requires more energy to maintain higher rates of shell formation during this early stage."

The researchers worked with Whiskey Creek Shellfish Hatchery in Netarts Bay, Ore. They found that on the second day of life, 100 percent of the larval tissue growth was from egg-derived carbon.

"The oyster larvae were still relying on egg-derived energy until they were 11 days old," said Elizabeth Brunner of Oregon State University and a co-author of the paper.

The earliest shell material in the larvae contained the greatest amount of carbon from the surrounding waters.

Increasing amounts of carbon from respiration were incorporated into shells after the first 48 hours, indicating an ability to isolate and control the shell surfaces where calcium carbonate is being deposited.

Waldbusser notes that adult bivalves are well-adapted to growing shell in conditions that are more acidified, and have evolved several mechanisms to do so.

These include use of organic molecules to organize and facilitate the formation of calcium carbonate, pumps that remove acid from the calcifying fluids, and outer shell coatings that protect minerals to some degree from surrounding waters.

Waldbusser said that the results help explain previous findings at the Whiskey Creek Hatchery of larval sensitivity to waters that are high in carbon dioxide but not corrosive to calcium carbonate.

They also explain carryover effects later in larval life of exposure to high carbon dioxide, similar to human neonatal nutrition effects.

The discovery may be good news, scientists say, because there are interventions that can be done at hatcheries that may offset some of the effects of ocean acidification.

Some hatcheries have begun "buffering" water for larvae--essentially adding antacids to incoming waters--including the Whiskey Creek Hatchery and the Taylor Shellfish Farms in Washington.

The study provides a scientific foundation for the target level of buffering.

"You can make sure that eggs have more energy before they enter the larval stage," said Waldbusser, "so a well-balanced adult diet may help larval oysters cope better with the stress of acidified water."

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Mark Floyd, Oregon State University (541) 737-0788 mark.floyd@oregonstate.edu
Peter Weiss, American Geophysical Union (202) 777-7507 pweiss@agu.org
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget was $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>