Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World Oceans Month Brings Mixed News for Oysters

13.06.2013
Ocean acidification inhibits shell formation, but interventions at hatcheries may offset some effects, scientists find

In World Oceans Month, there's mixed news for the Pacific Northwest oyster industry.


Research site in Netarts Bay, Oregon, at low tide; rows of bags contain seed oysters.

For the past several years, it has struggled with significant losses due to ocean acidification. Oyster larvae have had mortality rates high enough to render production no longer economically feasible.

Now a new study documents why oysters appear so sensitive to increasing acidity, but also offers some hope for the future.

It isn't necessarily a case of acidic water dissolving the oysters' shells, scientists say. It's water high in carbon dioxide altering shell formation rates, energy usage and, ultimately, the growth and survival of young oysters.

"The failure of oyster seed production in Northwest Pacific coastal waters is one of the most graphic examples of ocean acidification effects on important commercial shellfish," said Dave Garrison, program director in the National Science Foundation's (NSF) Division of Ocean Sciences.

NSF funded the study through its Ocean Acidification Program, part of NSF's Science, Engineering and Education for Sustainability programs.

"This research is among the first to identify the links among organism physiology, ocean carbonate chemistry and oyster seed mortality," said Garrison.

Results of the study are online in the journal Geophysical Research Letters, published by the American Geophysical Union.

"From the time eggs are fertilized, Pacific oyster larvae precipitate roughly 90 percent of their body weight as a calcium carbonate shell within 48 hours," said George Waldbusser, an Oregon State University marine ecologist and lead author of the paper.

"Young oysters rely solely on the energy they derive from the egg because they have not yet developed feeding organs."

During exposure to increasing carbon dioxide in acidified water, however, it becomes more energetically expensive for organisms like oysters to build shells.

Adult oysters and other bivalves may grow more slowly when exposed to rising carbon dioxide levels. But larvae in the first two days of life do not have the luxury of delayed growth.

"They must build their first shell quickly on a limited amount of energy--and along with the shell comes the organ to capture external food," said Waldbusser.

"It becomes a death race of sorts. Can the oyster build its shell quickly enough to allow its feeding mechanism to develop before it runs out of energy from the egg?"

The results are important, marine scientists say, because they document for the first time the links among shell formation rate, available energy, and sensitivity to acidification.

The researchers say that the faster the rate of shell formation, the more energy is needed. Oyster embryos building their first shells need "to make a lot of shell on short order," said Waldbusser.

"As the carbon dioxide in seawater increases, but before waters become corrosive, calcium carbonate precipitation requires more energy to maintain higher rates of shell formation during this early stage."

The researchers worked with Whiskey Creek Shellfish Hatchery in Netarts Bay, Ore. They found that on the second day of life, 100 percent of the larval tissue growth was from egg-derived carbon.

"The oyster larvae were still relying on egg-derived energy until they were 11 days old," said Elizabeth Brunner of Oregon State University and a co-author of the paper.

The earliest shell material in the larvae contained the greatest amount of carbon from the surrounding waters.

Increasing amounts of carbon from respiration were incorporated into shells after the first 48 hours, indicating an ability to isolate and control the shell surfaces where calcium carbonate is being deposited.

Waldbusser notes that adult bivalves are well-adapted to growing shell in conditions that are more acidified, and have evolved several mechanisms to do so.

These include use of organic molecules to organize and facilitate the formation of calcium carbonate, pumps that remove acid from the calcifying fluids, and outer shell coatings that protect minerals to some degree from surrounding waters.

Waldbusser said that the results help explain previous findings at the Whiskey Creek Hatchery of larval sensitivity to waters that are high in carbon dioxide but not corrosive to calcium carbonate.

They also explain carryover effects later in larval life of exposure to high carbon dioxide, similar to human neonatal nutrition effects.

The discovery may be good news, scientists say, because there are interventions that can be done at hatcheries that may offset some of the effects of ocean acidification.

Some hatcheries have begun "buffering" water for larvae--essentially adding antacids to incoming waters--including the Whiskey Creek Hatchery and the Taylor Shellfish Farms in Washington.

The study provides a scientific foundation for the target level of buffering.

"You can make sure that eggs have more energy before they enter the larval stage," said Waldbusser, "so a well-balanced adult diet may help larval oysters cope better with the stress of acidified water."

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Mark Floyd, Oregon State University (541) 737-0788 mark.floyd@oregonstate.edu
Peter Weiss, American Geophysical Union (202) 777-7507 pweiss@agu.org
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget was $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>