Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New world map for overcoming climate change

17.09.2013
Using data from the world's ecosystems and predictions of how climate change will impact them, scientists from the Wildlife Conservation Society, the University of Queensland, and Stanford University have produced a roadmap that identifies the world's most vulnerable and least vulnerable areas in the Age of Climate Change.

The authors say the vulnerability map will help governments, environmental agencies, and donors identify areas where to best invest in protected area establishment, restoration efforts, and other conservation activities so as to have the biggest return on investment in saving ecosystems and the services they provide to wildlife and people alike.


The map illustrates the global distribution of the climate stability/ecoregional intactness relationship. Ecoregions with both high climate stability and vegetation intactness are dark grey. Ecoregions with high climate stability but low levels of vegetation intactness are dark orange. Ecoregions with low climate stability but high vegetation intactness are dark green. Ecoregions that have both low climate stability and low levels of vegetation intactness are pale cream.

Credit: WCS

The study appears in an online version of the journal Nature Climate Change. The authors include: Dr James Watson of the Wildlife Conservation Society and the University of Queensland; Dr Takuya Iwamura of Stanford University; and Nathalie Butt of the University of Queensland.

"We need to realize that climate change is going to impact ecosystems both directly and indirectly in a variety of ways and we can't keep on assuming that all adaptation actions are suitable everywhere. The fact is there is only limited funds out there and we need to start to be clever in our investments in adaptation strategies around the world,," said Dr. James Watson, Director of WCS's Climate Change Program and lead author of the Nature study. "The analysis and map in this study is a means of bringing clarity to complicated decisions on where limited resources will do the most good."

The researchers argue that almost all climate change assessments to date are incomplete in that they assess how future climate change is going to impact landscapes and seascapes, without considering the fact that most of these landscapes have modified by human activities in different ways, making them more or less susceptible to climate change.

A vulnerability map produced in the study examines the relationship of two metrics: how intact an ecosystem is, and how stable the ecosystem is going to be under predictions of future climate change. The analysis creates a rating system with four general categories for the world's terrestrial regions, with management recommendations determined by the combination of factors.

Ecosystems with highly intact vegetation and high relative climate stability, for instance, are the best locations for future protected areas, as these have the best chance of retaining species. In contrast, ecosystems with low levels of vegetation and high relative climate stability could merit efforts at habitat restoration. Ecosystems with low levels of vegetation intactness and low climate stability would be most at risk and would require significant levels of investment to achieve conservation outcomes.

The new map, the authors say, identifies southern and southeastern Asia, western and central Europe, eastern South America, and southern Australia as some of the most vulnerable regions. The analysis differs from previous climate change exposure assessments based on only climate change exposure which shows the most vulnerable regions as central Africa, northern South America, and northern Australia.

"Effective conservation strategies must anticipate not only how species and habitats will cope with future climate change, but how humans will respond to these challenges," added Dr. John Robinson, Executive Vice President for Conservation and Science. "To that end, maintaining the integrity of the world's ecosystems will be the most important means of safeguarding the natural world and our own future."

The Wildlife Conservation Society saves wildlife and wild places worldwide. We do so through science, global conservation, education and the management of the world's largest system of urban wildlife parks, led by the flagship Bronx Zoo. Together these activities change attitudes towards nature and help people imagine wildlife and humans living in harmony. WCS is committed to this mission because it is essential to the integrity of life on Earth. Visit http://www.wcs.org.

Stephen Sautner | EurekAlert!
Further information:
http://www.wcs.org

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>