Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New world map for overcoming climate change

17.09.2013
Using data from the world's ecosystems and predictions of how climate change will impact them, scientists from the Wildlife Conservation Society, the University of Queensland, and Stanford University have produced a roadmap that identifies the world's most vulnerable and least vulnerable areas in the Age of Climate Change.

The authors say the vulnerability map will help governments, environmental agencies, and donors identify areas where to best invest in protected area establishment, restoration efforts, and other conservation activities so as to have the biggest return on investment in saving ecosystems and the services they provide to wildlife and people alike.


The map illustrates the global distribution of the climate stability/ecoregional intactness relationship. Ecoregions with both high climate stability and vegetation intactness are dark grey. Ecoregions with high climate stability but low levels of vegetation intactness are dark orange. Ecoregions with low climate stability but high vegetation intactness are dark green. Ecoregions that have both low climate stability and low levels of vegetation intactness are pale cream.

Credit: WCS

The study appears in an online version of the journal Nature Climate Change. The authors include: Dr James Watson of the Wildlife Conservation Society and the University of Queensland; Dr Takuya Iwamura of Stanford University; and Nathalie Butt of the University of Queensland.

"We need to realize that climate change is going to impact ecosystems both directly and indirectly in a variety of ways and we can't keep on assuming that all adaptation actions are suitable everywhere. The fact is there is only limited funds out there and we need to start to be clever in our investments in adaptation strategies around the world,," said Dr. James Watson, Director of WCS's Climate Change Program and lead author of the Nature study. "The analysis and map in this study is a means of bringing clarity to complicated decisions on where limited resources will do the most good."

The researchers argue that almost all climate change assessments to date are incomplete in that they assess how future climate change is going to impact landscapes and seascapes, without considering the fact that most of these landscapes have modified by human activities in different ways, making them more or less susceptible to climate change.

A vulnerability map produced in the study examines the relationship of two metrics: how intact an ecosystem is, and how stable the ecosystem is going to be under predictions of future climate change. The analysis creates a rating system with four general categories for the world's terrestrial regions, with management recommendations determined by the combination of factors.

Ecosystems with highly intact vegetation and high relative climate stability, for instance, are the best locations for future protected areas, as these have the best chance of retaining species. In contrast, ecosystems with low levels of vegetation and high relative climate stability could merit efforts at habitat restoration. Ecosystems with low levels of vegetation intactness and low climate stability would be most at risk and would require significant levels of investment to achieve conservation outcomes.

The new map, the authors say, identifies southern and southeastern Asia, western and central Europe, eastern South America, and southern Australia as some of the most vulnerable regions. The analysis differs from previous climate change exposure assessments based on only climate change exposure which shows the most vulnerable regions as central Africa, northern South America, and northern Australia.

"Effective conservation strategies must anticipate not only how species and habitats will cope with future climate change, but how humans will respond to these challenges," added Dr. John Robinson, Executive Vice President for Conservation and Science. "To that end, maintaining the integrity of the world's ecosystems will be the most important means of safeguarding the natural world and our own future."

The Wildlife Conservation Society saves wildlife and wild places worldwide. We do so through science, global conservation, education and the management of the world's largest system of urban wildlife parks, led by the flagship Bronx Zoo. Together these activities change attitudes towards nature and help people imagine wildlife and humans living in harmony. WCS is committed to this mission because it is essential to the integrity of life on Earth. Visit http://www.wcs.org.

Stephen Sautner | EurekAlert!
Further information:
http://www.wcs.org

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>