Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wolverine population threatened by climate change

04.02.2011
The aggressive wolverine may not be powerful enough to survive climate change in the contiguous United States, new research concludes.

Wolverine habitat in the northwestern United States is likely to warm dramatically if society continues to emit large amounts of greenhouse gases, according to new computer model simulations carried out at the National Center for Atmospheric Research (NCAR).

The study found that climate change is likely to imperil the wolverine in two ways: reducing or eliminating the springtime snow cover that wolverines rely on to protect and shelter newborn kits, and increasing August temperatures well beyond what the species may be able to tolerate.

Wolverines make their home mainly in the boreal forests and tundra regions of North America, Europe, and Asia. (Photo by Vince Maidens, Creative Commons License.)“Species that depend on snow cover for their survival are likely to be very vulnerable to climate change,” says NCAR scientist Synte Peacock, the author of the study. “It’s highly uncertain whether wolverines will continue to survive in the lower 48, given the changes that are likely to take place there.”

Peacock’s research focused on mountainous regions of the Northwest, the primary habitat of the wolverine population in the contiguous United States. The study did not look into the impacts of climate change on regions where wolverines are more numerous, such as Canada, although other research has indicated those areas will likely warm significantly as well.

The study was published last week in Environmental Research Letters. It was funded by the National Science Foundation, NCAR’s sponsor.

An animal built for the cold
Wolverines make their home mainly in the boreal forests and tundra regions of North America, Europe, and Asia. Their thick, oily fur insulates them from frost and large padded paws help them run through deep snow. While some 15,000 or more wolverines are believed to roam Canada and an unknown number in Alaska, only a few dozen to a few hundred are believed to live in the contiguous United States, almost entirely in mountainous areas in Wyoming, Idaho, Montana, and Washington.

Wolverines inhabit regions that have late-season snow cover and relatively cool summer temperatures. Female wolverines make their springtime dens in the snow, which provides warmth to the newborn kits and protects them from predators.

Biologists are dubious that the species could survive in regions with little spring snow or significantly higher summertime temperatures. Concerned over habitat loss and the potential threat of climate change, the U.S. Fish & Wildlife Service announced in December 2010 that the wolverine warrants protection under the Endangered Species Act, but delayed that protection because other species took higher priority.

To project the future climate in regions of the contiguous United States where wolverines live, Peacock analyzed results from new simulations carried out by a team of researchers at NCAR using the newest version of the Community Climate System Model (which was developed by scientists at the Department of Energy and NCAR with colleagues at other organizations). She analyzed three scenarios of greenhouse gas emissions: low (carbon dioxide emissions stay at present-day levels until 2020 and then decline to zero by the early 2080s); medium-low (emissions rise slightly until 2040 and then decline sharply toward the end of the century); and high (emissions continue to increase unabated).

In the high emissions scenario, the computer simulations showed spring snow cover nearly or completely vanishing during the second half of this century in present-day wolverine habitat. Similarly, spring snow cover in the medium-low scenario became greatly diminished, with many years experiencing zero snow cover. Under the low emissions scenario, springtime snow cover conditions remained similar to those of the present day.

Synte Peacock (©UCAR, Photo by Carlye Calvin. This image is freely available for media use. For more information, see Media & nonprofit use.*)The computer projections also showed that August temperatures may increase dramatically. Whereas August temperatures currently top off at about 72 degrees F (22 degrees C) in areas where wolverines live, maximum daily temperatures by the end of the century were projected to frequently exceed 90 degrees F (32 degrees C) under the two higher-emissions scenarios.

“Unless the wolverine is able to very rapidly adapt to summertime temperatures far above anything it currently experiences, and to a spring with little or no snow cover, it is unlikely that it will continue to survive in the contiguous U.S. under a high or medium-low emissions scenario,” the study concludes.

The model simulations also indicated the extent to which climate change may transform the West, where society depends on mountain snowpack. This critical source of water could decrease by a factor of three to four over Idaho, western Montana, and western Wyoming by the end of this century under the high emissions scenario. Even under the medium-low emissions scenario, snowpack could drop by a factor of two to three in these regions.

Peacock checked the accuracy of the model by comparing simulations of late 20th century climate with observations. Results indicated that the model did a good job simulating climate conditions in Idaho, Montana, and Wyoming. Since the model tended to underestimate snowpack in Washington, Peacock did not include that state in the study.

About the article
Title: Projected 21st century climate change for wolverine habitats within the contiguous United States

Author: Synte Peacock

Publication: Environmental Research Letters, January 27, 2011

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu
http://www2.ucar.edu/news/3783/wolverine-population-threatened-climate-change

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>