Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wolverine population threatened by climate change

04.02.2011
The aggressive wolverine may not be powerful enough to survive climate change in the contiguous United States, new research concludes.

Wolverine habitat in the northwestern United States is likely to warm dramatically if society continues to emit large amounts of greenhouse gases, according to new computer model simulations carried out at the National Center for Atmospheric Research (NCAR).

The study found that climate change is likely to imperil the wolverine in two ways: reducing or eliminating the springtime snow cover that wolverines rely on to protect and shelter newborn kits, and increasing August temperatures well beyond what the species may be able to tolerate.

Wolverines make their home mainly in the boreal forests and tundra regions of North America, Europe, and Asia. (Photo by Vince Maidens, Creative Commons License.)“Species that depend on snow cover for their survival are likely to be very vulnerable to climate change,” says NCAR scientist Synte Peacock, the author of the study. “It’s highly uncertain whether wolverines will continue to survive in the lower 48, given the changes that are likely to take place there.”

Peacock’s research focused on mountainous regions of the Northwest, the primary habitat of the wolverine population in the contiguous United States. The study did not look into the impacts of climate change on regions where wolverines are more numerous, such as Canada, although other research has indicated those areas will likely warm significantly as well.

The study was published last week in Environmental Research Letters. It was funded by the National Science Foundation, NCAR’s sponsor.

An animal built for the cold
Wolverines make their home mainly in the boreal forests and tundra regions of North America, Europe, and Asia. Their thick, oily fur insulates them from frost and large padded paws help them run through deep snow. While some 15,000 or more wolverines are believed to roam Canada and an unknown number in Alaska, only a few dozen to a few hundred are believed to live in the contiguous United States, almost entirely in mountainous areas in Wyoming, Idaho, Montana, and Washington.

Wolverines inhabit regions that have late-season snow cover and relatively cool summer temperatures. Female wolverines make their springtime dens in the snow, which provides warmth to the newborn kits and protects them from predators.

Biologists are dubious that the species could survive in regions with little spring snow or significantly higher summertime temperatures. Concerned over habitat loss and the potential threat of climate change, the U.S. Fish & Wildlife Service announced in December 2010 that the wolverine warrants protection under the Endangered Species Act, but delayed that protection because other species took higher priority.

To project the future climate in regions of the contiguous United States where wolverines live, Peacock analyzed results from new simulations carried out by a team of researchers at NCAR using the newest version of the Community Climate System Model (which was developed by scientists at the Department of Energy and NCAR with colleagues at other organizations). She analyzed three scenarios of greenhouse gas emissions: low (carbon dioxide emissions stay at present-day levels until 2020 and then decline to zero by the early 2080s); medium-low (emissions rise slightly until 2040 and then decline sharply toward the end of the century); and high (emissions continue to increase unabated).

In the high emissions scenario, the computer simulations showed spring snow cover nearly or completely vanishing during the second half of this century in present-day wolverine habitat. Similarly, spring snow cover in the medium-low scenario became greatly diminished, with many years experiencing zero snow cover. Under the low emissions scenario, springtime snow cover conditions remained similar to those of the present day.

Synte Peacock (©UCAR, Photo by Carlye Calvin. This image is freely available for media use. For more information, see Media & nonprofit use.*)The computer projections also showed that August temperatures may increase dramatically. Whereas August temperatures currently top off at about 72 degrees F (22 degrees C) in areas where wolverines live, maximum daily temperatures by the end of the century were projected to frequently exceed 90 degrees F (32 degrees C) under the two higher-emissions scenarios.

“Unless the wolverine is able to very rapidly adapt to summertime temperatures far above anything it currently experiences, and to a spring with little or no snow cover, it is unlikely that it will continue to survive in the contiguous U.S. under a high or medium-low emissions scenario,” the study concludes.

The model simulations also indicated the extent to which climate change may transform the West, where society depends on mountain snowpack. This critical source of water could decrease by a factor of three to four over Idaho, western Montana, and western Wyoming by the end of this century under the high emissions scenario. Even under the medium-low emissions scenario, snowpack could drop by a factor of two to three in these regions.

Peacock checked the accuracy of the model by comparing simulations of late 20th century climate with observations. Results indicated that the model did a good job simulating climate conditions in Idaho, Montana, and Wyoming. Since the model tended to underestimate snowpack in Washington, Peacock did not include that state in the study.

About the article
Title: Projected 21st century climate change for wolverine habitats within the contiguous United States

Author: Synte Peacock

Publication: Environmental Research Letters, January 27, 2011

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu
http://www2.ucar.edu/news/3783/wolverine-population-threatened-climate-change

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>